Normalized defining polynomial
\( x^{16} - 6 x^{15} - 68 x^{14} + 507 x^{13} - 1597 x^{12} - 7768 x^{11} + 50397 x^{10} - 78689 x^{9} + 2148726 x^{8} - 3895029 x^{7} + 12299693 x^{6} - 42398902 x^{5} - 45938641 x^{4} + 50586939 x^{3} - 125389252 x^{2} - 9553740 x + 85935077 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8767895277848913089642817986417897713=61^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{412} a^{14} + \frac{12}{103} a^{13} + \frac{147}{412} a^{12} - \frac{179}{412} a^{11} - \frac{91}{206} a^{10} + \frac{7}{412} a^{9} + \frac{113}{412} a^{8} + \frac{89}{206} a^{7} - \frac{107}{412} a^{6} + \frac{27}{412} a^{5} + \frac{101}{206} a^{4} - \frac{105}{412} a^{3} + \frac{107}{412} a^{2} - \frac{73}{206} a - \frac{127}{412}$, $\frac{1}{3045175618493769082740406376006441417963924055720153005989946735896} a^{15} + \frac{759783402063660973847844113268812681111302334326244718415344467}{3045175618493769082740406376006441417963924055720153005989946735896} a^{14} + \frac{610809783974826403610868088359782626835021405173509644552602888307}{3045175618493769082740406376006441417963924055720153005989946735896} a^{13} + \frac{134074070227176390799473121481609254678242383310175602060842656455}{1522587809246884541370203188003220708981962027860076502994973367948} a^{12} - \frac{1354669547525366742441018980493547240794718378341990393400851344387}{3045175618493769082740406376006441417963924055720153005989946735896} a^{11} - \frac{462105216521994948308253943252887005717012355566650970181176205655}{3045175618493769082740406376006441417963924055720153005989946735896} a^{10} - \frac{265575338860164848870580604609828585143189154882057107547182158929}{1522587809246884541370203188003220708981962027860076502994973367948} a^{9} + \frac{819259520066632709791198069093049395424383819454495528952549269817}{3045175618493769082740406376006441417963924055720153005989946735896} a^{8} + \frac{1132859425542296880727289045611881791650545992080096751064949394307}{3045175618493769082740406376006441417963924055720153005989946735896} a^{7} + \frac{681440614680464779942375560938178877497096058349718926984646238627}{1522587809246884541370203188003220708981962027860076502994973367948} a^{6} + \frac{550819527873927888454404583365142471491044706529083754881757232223}{3045175618493769082740406376006441417963924055720153005989946735896} a^{5} - \frac{548557440804778330563545412600626116639041495453450140789459078507}{3045175618493769082740406376006441417963924055720153005989946735896} a^{4} - \frac{62220667039362989676358858488977741236032238359148409479282715535}{761293904623442270685101594001610354490981013930038251497486683974} a^{3} - \frac{1426743218381396402119469848806839974561443521643724525789449111765}{3045175618493769082740406376006441417963924055720153005989946735896} a^{2} + \frac{523450399950194107737731372350632764414093094941910730981328190451}{3045175618493769082740406376006441417963924055720153005989946735896} a - \frac{19377229741306272327841314996227294199065972423467272760467823513}{3045175618493769082740406376006441417963924055720153005989946735896}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1486239938610 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97 | Data not computed | ||||||