Normalized defining polynomial
\( x^{16} - 5 x^{15} + 39 x^{14} + 125 x^{13} - 8134 x^{12} + 8768 x^{11} + 25855 x^{10} - 314877 x^{9} + 1291073 x^{8} - 3231766 x^{7} - 5743921 x^{6} + 36806443 x^{5} - 51369568 x^{4} + 15105765 x^{3} + 16830832 x^{2} - 8408452 x - 939737 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8767895277848913089642817986417897713=61^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{14} + \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{8} - \frac{3}{8} a^{7} + \frac{3}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{3540693326243118528497534230117929654037818276245425708923448} a^{15} + \frac{66010667535231425269826442152673396057986783394297513176217}{1770346663121559264248767115058964827018909138122712854461724} a^{14} + \frac{11908322848028166809867814217202825836092079007306672417843}{442586665780389816062191778764741206754727284530678213615431} a^{13} + \frac{270562869902981003714221655512091059491519966912828731208121}{3540693326243118528497534230117929654037818276245425708923448} a^{12} - \frac{245647556291748342139914957695364865826886163271844222503179}{3540693326243118528497534230117929654037818276245425708923448} a^{11} + \frac{342675290697596072772446509999631528672246604888160442174217}{1770346663121559264248767115058964827018909138122712854461724} a^{10} - \frac{294875799210440164231558451867798206191033028674443614357275}{1770346663121559264248767115058964827018909138122712854461724} a^{9} - \frac{1170607988888141380660666273023569197509882034514430764105023}{3540693326243118528497534230117929654037818276245425708923448} a^{8} - \frac{600202264554842764729639410255453617636048872296825560161423}{1770346663121559264248767115058964827018909138122712854461724} a^{7} - \frac{396935980629284608779994067331833324848743470293009768339261}{3540693326243118528497534230117929654037818276245425708923448} a^{6} + \frac{143229506315076082377055266358770652775192709956115604021742}{442586665780389816062191778764741206754727284530678213615431} a^{5} - \frac{252531843047513306348533446484717552648532010076571152115681}{885173331560779632124383557529482413509454569061356427230862} a^{4} + \frac{274339272582658243582853295194061431773480712502051915018155}{1770346663121559264248767115058964827018909138122712854461724} a^{3} - \frac{561432455400618624449401045441200426409310755535378261888189}{3540693326243118528497534230117929654037818276245425708923448} a^{2} - \frac{528619389190955287940321671695016998147585940435188338472085}{3540693326243118528497534230117929654037818276245425708923448} a + \frac{129385911678809136225334919886468568879008861846756579542935}{1770346663121559264248767115058964827018909138122712854461724}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 625132198351 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||