Normalized defining polynomial
\( x^{16} - 6 x^{15} - 68 x^{14} - 75 x^{13} - 2082 x^{12} + 23660 x^{11} + 97345 x^{10} - 688528 x^{9} + 384199 x^{8} - 3788717 x^{7} + 3798904 x^{6} + 392424841 x^{5} + 341740386 x^{4} + 161939835 x^{3} - 7687245606 x^{2} + 6779883369 x - 791777377 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8767895277848913089642817986417897713=61^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{15} + \frac{25789995603037686238969796547367968896772055423052819834032747153408694455978}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{14} - \frac{18030654907814383068840385455185818106909376105831255560035655593648727310732}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{13} - \frac{3567142967340315584629750585785002007303713665431135235936263401723118513786}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{12} + \frac{35751167031266724366098015029778418488469405314903681975778791417701346227414}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{11} - \frac{21303946486269459952560536528494969154486499592370895261802734335494456160059}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{10} - \frac{12215905427581742954698956602057992784740604561501843956212817634459077448445}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{9} - \frac{17577381700368891158594252783976934488806932803281772199979768803616685562217}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{8} - \frac{30939966229032599951549006832551061496410122998580124111862823376785274573195}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{7} + \frac{30430354349537054781353424704388154346177203259667049591289508738698297913893}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{6} + \frac{42412919267568278279323403916653322744404919174765487570468731523854766545920}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{5} - \frac{36748919989689321722280007045360633145824737348901574049908549699776682769833}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{4} + \frac{4033390242871255869762094824797696622368329485309308528186282022540118428304}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{3} - \frac{30963755500629224140608050495338058606728450977993375731920317142290350294766}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a^{2} - \frac{4803305645279290129312562970678603815873280747071692412707437129692510155284}{84916775603173268528347001933642347257837238547144380018341161604638331282913} a - \frac{106722460490417542361634098147811904862990543514280474565446401726582956442}{824434714593915228430553416831479099590652801428586213770302539850857585271}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 137803342579 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||