Normalized defining polynomial
\( x^{16} - 2 x^{14} - 16 x^{13} + 2 x^{12} + 32 x^{11} + 106 x^{10} - 48 x^{9} - 307 x^{8} - 40 x^{7} + 316 x^{6} + 504 x^{5} - 752 x^{4} + 128 x^{3} + 128 x^{2} - 48 x + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8658627871363934715904=2^{32}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{2} a^{7} - \frac{3}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{8} a^{11} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{3}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{8} - \frac{1}{2} a^{7} - \frac{3}{16} a^{6} + \frac{1}{8} a^{5} - \frac{3}{8} a^{4} - \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{304} a^{13} + \frac{5}{304} a^{12} + \frac{1}{304} a^{11} - \frac{13}{304} a^{10} + \frac{75}{304} a^{9} + \frac{41}{304} a^{8} - \frac{121}{304} a^{7} + \frac{85}{304} a^{6} + \frac{51}{152} a^{5} + \frac{31}{76} a^{4} - \frac{73}{152} a^{3} + \frac{41}{152} a^{2} - \frac{29}{76} a + \frac{4}{19}$, $\frac{1}{304} a^{14} - \frac{5}{304} a^{12} - \frac{9}{152} a^{11} + \frac{7}{304} a^{10} + \frac{1}{38} a^{9} - \frac{3}{304} a^{8} + \frac{41}{152} a^{7} - \frac{1}{8} a^{6} + \frac{2}{19} a^{5} - \frac{3}{152} a^{4} + \frac{13}{76} a^{3} - \frac{27}{76} a^{2} + \frac{7}{19} a + \frac{17}{38}$, $\frac{1}{38891936} a^{15} - \frac{31527}{38891936} a^{14} + \frac{32481}{38891936} a^{13} + \frac{211101}{38891936} a^{12} - \frac{1661819}{38891936} a^{11} - \frac{1410979}{38891936} a^{10} - \frac{8567679}{38891936} a^{9} - \frac{2282059}{38891936} a^{8} - \frac{10820}{25859} a^{7} + \frac{2125805}{4861492} a^{6} + \frac{1956307}{9722984} a^{5} - \frac{4242821}{9722984} a^{4} - \frac{2325977}{9722984} a^{3} - \frac{3506437}{9722984} a^{2} - \frac{4807759}{9722984} a - \frac{4032163}{9722984}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1002227.43409 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $D_4.D_4$ |
| Character table for $D_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{34}) \), 4.4.9248.1 x2, 4.4.4352.1 x2, \(\Q(\sqrt{2}, \sqrt{17})\), 8.8.5473632256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $17$ | 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |