Normalized defining polynomial
\( x^{16} - 40 x^{14} - 64 x^{13} + 404 x^{12} + 912 x^{11} - 1688 x^{10} - 5248 x^{9} + 2104 x^{8} + 12992 x^{7} + 1384 x^{6} - 9440 x^{5} + 15604 x^{4} + 24336 x^{3} - 6200 x^{2} - 10144 x + 3025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86030523224437701564163948544=2^{64}\cdot 7^{8}\cdot 809\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{29125} a^{14} + \frac{633}{29125} a^{13} + \frac{10683}{29125} a^{12} - \frac{8828}{29125} a^{11} + \frac{8377}{29125} a^{10} - \frac{10599}{29125} a^{9} - \frac{9912}{29125} a^{8} - \frac{2657}{5825} a^{7} - \frac{684}{29125} a^{6} - \frac{2134}{5825} a^{5} + \frac{14268}{29125} a^{4} - \frac{12451}{29125} a^{3} + \frac{2983}{29125} a^{2} - \frac{884}{29125} a + \frac{26}{1165}$, $\frac{1}{1032693317159536233125} a^{15} + \frac{6225674809247749}{1032693317159536233125} a^{14} - \frac{86852180459348656764}{1032693317159536233125} a^{13} - \frac{8827702878731412839}{41307732686381449325} a^{12} + \frac{188740792631026405329}{1032693317159536233125} a^{11} - \frac{87599426889451144117}{1032693317159536233125} a^{10} + \frac{413838167159256202604}{1032693317159536233125} a^{9} - \frac{102450530259903820577}{1032693317159536233125} a^{8} - \frac{25220504690933203119}{1032693317159536233125} a^{7} + \frac{455562923011877469861}{1032693317159536233125} a^{6} - \frac{465372715989193415952}{1032693317159536233125} a^{5} + \frac{358712168631251758012}{1032693317159536233125} a^{4} - \frac{269317280104702833333}{1032693317159536233125} a^{3} - \frac{232694153515316553106}{1032693317159536233125} a^{2} + \frac{36657445951198956231}{1032693317159536233125} a + \frac{18379316514348453321}{41307732686381449325}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 508263462.019 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 73 conjugacy class representatives for t16n1638 are not computed |
| Character table for t16n1638 is not computed |
Intermediate fields
| \(\Q(\sqrt{14}) \), 4.4.100352.2, 8.8.5156108238848.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 809 | Data not computed | ||||||