Normalized defining polynomial
\( x^{16} - 8 x^{15} + 40 x^{14} - 140 x^{13} + 330 x^{12} - 524 x^{11} + 412 x^{10} + 360 x^{9} - 1395 x^{8} + 1660 x^{7} - 628 x^{6} - 836 x^{5} + 960 x^{4} - 80 x^{3} - 200 x^{2} + 48 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(85977968400000000000000=2^{16}\cdot 3^{8}\cdot 5^{14}\cdot 181^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{20} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} - \frac{1}{10} a^{5} - \frac{1}{4} a^{4} + \frac{1}{10} a^{3} + \frac{1}{10} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{20} a^{9} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{3}{20} a^{5} + \frac{1}{10} a^{4} - \frac{1}{2} a^{3} + \frac{1}{10} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{20} a^{10} - \frac{1}{4} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5}$, $\frac{1}{20} a^{11} - \frac{1}{4} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a$, $\frac{1}{40} a^{12} - \frac{1}{40} a^{10} - \frac{1}{40} a^{8} + \frac{1}{5} a^{7} - \frac{7}{40} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{40} a^{13} - \frac{1}{40} a^{11} - \frac{1}{40} a^{9} + \frac{1}{8} a^{7} - \frac{1}{5} a^{6} - \frac{1}{10} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{36200} a^{14} - \frac{7}{36200} a^{13} + \frac{259}{36200} a^{12} + \frac{347}{36200} a^{11} - \frac{519}{36200} a^{10} - \frac{451}{36200} a^{9} + \frac{317}{36200} a^{8} - \frac{1699}{36200} a^{7} + \frac{4409}{18100} a^{6} + \frac{4207}{18100} a^{5} + \frac{1961}{9050} a^{4} - \frac{697}{9050} a^{3} + \frac{1902}{4525} a^{2} + \frac{56}{4525} a + \frac{913}{4525}$, $\frac{1}{36200} a^{15} + \frac{21}{3620} a^{13} + \frac{7}{724} a^{12} + \frac{1}{362} a^{11} - \frac{58}{4525} a^{10} + \frac{39}{1810} a^{9} + \frac{13}{905} a^{8} + \frac{471}{7240} a^{7} - \frac{147}{905} a^{6} - \frac{1019}{18100} a^{5} - \frac{399}{3620} a^{4} + \frac{69}{181} a^{3} - \frac{41}{905} a^{2} + \frac{261}{905} a + \frac{961}{4525}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 282983.732049 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 64 conjugacy class representatives for t16n1102 are not computed |
| Character table for t16n1102 is not computed |
Intermediate fields
| \(\Q(\sqrt{15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{20})^+\), \(\Q(\zeta_{15})^+\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\zeta_{60})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 181 | Data not computed | ||||||