Normalized defining polynomial
\( x^{16} - 6 x^{15} + x^{14} + 49 x^{13} - 141 x^{12} + 33 x^{11} + 813 x^{10} - 1008 x^{9} - 149 x^{8} + 5648 x^{7} - 1418 x^{6} - 9723 x^{5} - 331 x^{4} + 5028 x^{3} + 192 x^{2} - 728 x + 208 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8583027023095873875496489=13^{10}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{18} a^{10} + \frac{1}{18} a^{8} + \frac{1}{18} a^{7} - \frac{1}{18} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{5}{18} a + \frac{2}{9}$, $\frac{1}{18} a^{11} + \frac{1}{18} a^{9} + \frac{1}{18} a^{8} - \frac{1}{18} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{5}{18} a^{2} + \frac{2}{9} a$, $\frac{1}{54} a^{12} - \frac{1}{54} a^{10} + \frac{2}{27} a^{9} + \frac{1}{54} a^{8} - \frac{1}{27} a^{7} - \frac{2}{27} a^{6} - \frac{1}{54} a^{4} - \frac{5}{54} a^{3} + \frac{7}{54} a^{2} - \frac{11}{54} a - \frac{13}{27}$, $\frac{1}{594} a^{13} - \frac{1}{594} a^{12} - \frac{13}{594} a^{11} - \frac{8}{297} a^{10} + \frac{8}{99} a^{9} - \frac{1}{22} a^{8} + \frac{49}{594} a^{7} + \frac{49}{594} a^{6} + \frac{37}{297} a^{5} + \frac{148}{297} a^{4} - \frac{1}{18} a^{3} - \frac{61}{198} a^{2} - \frac{31}{198} a - \frac{74}{297}$, $\frac{1}{566676} a^{14} + \frac{1}{1431} a^{13} + \frac{395}{188892} a^{12} - \frac{3659}{566676} a^{11} + \frac{5155}{188892} a^{10} - \frac{17821}{566676} a^{9} - \frac{625}{17172} a^{8} - \frac{12535}{283338} a^{7} - \frac{85655}{566676} a^{6} - \frac{47203}{283338} a^{5} + \frac{15469}{31482} a^{4} + \frac{144665}{566676} a^{3} - \frac{221233}{566676} a^{2} - \frac{52874}{141669} a - \frac{17483}{141669}$, $\frac{1}{10651177494936} a^{15} + \frac{3221209}{5325588747468} a^{14} + \frac{731310995}{3550392498312} a^{13} - \frac{90667253855}{10651177494936} a^{12} + \frac{11764007975}{10651177494936} a^{11} - \frac{179094146503}{10651177494936} a^{10} - \frac{201073663511}{10651177494936} a^{9} - \frac{14895252721}{91820495646} a^{8} - \frac{103829626039}{3550392498312} a^{7} - \frac{15861976303}{147933020763} a^{6} - \frac{145088705723}{5325588747468} a^{5} + \frac{223739796473}{10651177494936} a^{4} - \frac{185940211001}{3550392498312} a^{3} - \frac{346274070881}{1331397186867} a^{2} + \frac{13699336198}{443799062289} a + \frac{463037314117}{1331397186867}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9241015.28903 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{689}) \), 4.4.8957.1 x2, 4.4.36517.1 x2, \(\Q(\sqrt{13}, \sqrt{53})\), 8.4.2929680361933.4 x2, 8.4.225360027841.1 x2, 8.8.225360027841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |