Normalized defining polynomial
\( x^{16} - 2 x^{15} - 19 x^{14} + 35 x^{13} + 90 x^{12} - 265 x^{11} - 5 x^{10} + 1444 x^{9} + 1264 x^{8} - 3145 x^{7} - 7994 x^{6} + 493 x^{5} + 2574 x^{4} - 1223 x^{3} + 431 x^{2} + 143 x + 121 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8583027023095873875496489=13^{10}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{39} a^{12} + \frac{4}{39} a^{11} - \frac{2}{39} a^{10} + \frac{2}{39} a^{9} + \frac{5}{13} a^{7} - \frac{1}{13} a^{6} + \frac{2}{13} a^{5} - \frac{4}{39} a^{4} - \frac{10}{39} a^{3} + \frac{14}{39} a^{2} - \frac{11}{39} a - \frac{3}{13}$, $\frac{1}{39} a^{13} - \frac{5}{39} a^{11} - \frac{1}{13} a^{10} + \frac{5}{39} a^{9} + \frac{2}{39} a^{8} + \frac{5}{13} a^{7} + \frac{6}{13} a^{6} + \frac{11}{39} a^{5} + \frac{2}{13} a^{4} + \frac{2}{39} a^{3} - \frac{5}{13} a^{2} - \frac{17}{39} a + \frac{10}{39}$, $\frac{1}{1521} a^{14} + \frac{14}{1521} a^{13} + \frac{11}{1521} a^{12} + \frac{10}{507} a^{11} - \frac{43}{1521} a^{10} - \frac{14}{117} a^{9} - \frac{152}{1521} a^{8} + \frac{3}{13} a^{7} + \frac{371}{1521} a^{6} + \frac{100}{1521} a^{5} + \frac{724}{1521} a^{4} - \frac{244}{507} a^{3} - \frac{536}{1521} a^{2} - \frac{625}{1521} a - \frac{394}{1521}$, $\frac{1}{333746979150890822517} a^{15} + \frac{13577286300560813}{47678139878698688931} a^{14} + \frac{222415876524395843}{333746979150890822517} a^{13} - \frac{357089620901602240}{111248993050296940839} a^{12} + \frac{936414021730116572}{47678139878698688931} a^{11} - \frac{24338590299287020868}{333746979150890822517} a^{10} - \frac{25592336994848893538}{333746979150890822517} a^{9} + \frac{1677062550612429391}{37082997683432313613} a^{8} + \frac{30221605072455978422}{333746979150890822517} a^{7} + \frac{58556507905405462789}{333746979150890822517} a^{6} + \frac{24123494885992042192}{333746979150890822517} a^{5} - \frac{40413419650969482554}{111248993050296940839} a^{4} + \frac{12614939913943183952}{30340634468262802047} a^{3} - \frac{13347954265767810328}{333746979150890822517} a^{2} - \frac{43154301020366019493}{333746979150890822517} a + \frac{1621616366247666494}{3371181607584755783}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6129504.74347 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{689}) \), 4.4.36517.1 x2, 4.4.8957.1 x2, \(\Q(\sqrt{13}, \sqrt{53})\), 8.4.17335386757.1, 8.4.2929680361933.2, 8.8.225360027841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |