Normalized defining polynomial
\( x^{16} - 4 x^{15} - 18 x^{14} + 400 x^{13} - 1843 x^{12} + 1206 x^{11} + 13958 x^{10} - 205180 x^{9} + 755165 x^{8} - 1516280 x^{7} - 13742081 x^{6} + 61595184 x^{5} + 162479515 x^{4} - 291554556 x^{3} - 960643601 x^{2} - 369718978 x + 315886199 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8517153582795178291400802304000000=2^{24}\cdot 5^{6}\cdot 409^{2}\cdot 761^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 409, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{23} a^{13} + \frac{7}{23} a^{12} + \frac{7}{23} a^{11} - \frac{8}{23} a^{9} + \frac{5}{23} a^{8} + \frac{8}{23} a^{7} - \frac{1}{23} a^{6} + \frac{3}{23} a^{5} + \frac{4}{23} a^{4} + \frac{6}{23} a^{3} - \frac{10}{23} a^{2} - \frac{6}{23} a + \frac{5}{23}$, $\frac{1}{23} a^{14} + \frac{4}{23} a^{12} - \frac{3}{23} a^{11} - \frac{8}{23} a^{10} - \frac{8}{23} a^{9} - \frac{4}{23} a^{8} - \frac{11}{23} a^{7} + \frac{10}{23} a^{6} + \frac{6}{23} a^{5} + \frac{1}{23} a^{4} - \frac{6}{23} a^{3} - \frac{5}{23} a^{2} + \frac{1}{23} a + \frac{11}{23}$, $\frac{1}{346054266863913496550075818739478738343702851800398877628814411453} a^{15} + \frac{130239116580110198655650858764890343819202736608366080432645363}{15045837689735369415220687771281684275813167469582559896904974411} a^{14} + \frac{6065325104733018990517395080652268534406936072962658584248964138}{346054266863913496550075818739478738343702851800398877628814411453} a^{13} - \frac{163822142750938767757923579433653071555777337706325764815223628770}{346054266863913496550075818739478738343702851800398877628814411453} a^{12} - \frac{4002599719993467491892907441156597229754213477952844940758167108}{49436323837701928078582259819925534049100407400056982518402058779} a^{11} - \frac{154486979266357095157228266451127117688820563146394543994601542}{346054266863913496550075818739478738343702851800398877628814411453} a^{10} + \frac{167874967681881628641278991841713806626919415237388756212291783210}{346054266863913496550075818739478738343702851800398877628814411453} a^{9} - \frac{157102157503935199544116332770404237322097145229968668587100685}{320124206164582327983418888750674133527939733395373614827765413} a^{8} + \frac{2704356425153979146977272737669401871449249066102232538900173595}{15045837689735369415220687771281684275813167469582559896904974411} a^{7} - \frac{9157825071986348729555650033377894787620641628017880019467471258}{49436323837701928078582259819925534049100407400056982518402058779} a^{6} + \frac{132538014162103891224118282964099140557920079587499516807453734}{1276953014257983382103600807156748111969383216975641614866473843} a^{5} - \frac{160694918290915006807753043662883369651635771067372013222313253626}{346054266863913496550075818739478738343702851800398877628814411453} a^{4} + \frac{148262872267762309629258682854251662204229044174866928318439891463}{346054266863913496550075818739478738343702851800398877628814411453} a^{3} + \frac{378811554131083679522324624615097907204787370529672732712720555}{1051836677397913363374090634466500724448944838299084734434086357} a^{2} - \frac{123028158444687521215191110405728977556892961051091531776389046534}{346054266863913496550075818739478738343702851800398877628814411453} a - \frac{128697444539702163315031054806285534476902222609751486189865022788}{346054266863913496550075818739478738343702851800398877628814411453}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31602736714.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 58 conjugacy class representatives for t16n1127 are not computed |
| Character table for t16n1127 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.48704.1, 8.8.59301990400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 409 | Data not computed | ||||||
| 761 | Data not computed | ||||||