Normalized defining polynomial
\( x^{16} - 2 x^{15} - 85 x^{14} + 582 x^{13} - 7876 x^{12} + 12454 x^{11} + 65721 x^{10} - 124402 x^{9} + 1310177 x^{8} - 1272146 x^{7} + 2227616 x^{6} - 23486622 x^{5} + 43234682 x^{4} - 101529080 x^{3} + 168658082 x^{2} - 24597176 x - 62213719 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8517153582795178291400802304000000=2^{24}\cdot 5^{6}\cdot 409^{2}\cdot 761^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 409, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{15} + \frac{2778053301731592063645403876148601216622180998715535367139016139549623}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{14} - \frac{2422363739781709409433996610106532008474211632091883746681111025573627}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{13} - \frac{2442028516495917815501406036109746255930250624552077724235033591839128}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{12} + \frac{1874009674401685037231930752596550261617205719339535444319924348867466}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{11} - \frac{1586437333431965880363968531192319710360538384090355328266518699855142}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{10} + \frac{1924253234579215592199233215327466508086540439125650692214072673965325}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{9} - \frac{3185283939023822483613597810697751415109043539034377116437006068983357}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{8} - \frac{2696567329319426763033565806600460281567463729754824094676321728205615}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{7} + \frac{3143067253263411956742758245081552514822879200445073579177261226766792}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{6} - \frac{20261188068496615951936410516609597048442141915242880318694145425149}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{5} + \frac{1301551145935453965285705397610918457132821713133286300556753300858798}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{4} - \frac{2475974034293996421590463086509562281060175109007877777154534447752938}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{3} - \frac{2543850835680001592042318734526378254835184760824859511183682670207859}{7799189882343827208553945193592667669366464444277555453139182303262807} a^{2} - \frac{1432564850461320506293475380039213615877467156443971088339720054245512}{7799189882343827208553945193592667669366464444277555453139182303262807} a + \frac{986882514227666001715063938693927614105852145355617200170869935442915}{7799189882343827208553945193592667669366464444277555453139182303262807}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21361254063.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 58 conjugacy class representatives for t16n1127 are not computed |
| Character table for t16n1127 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.48704.1, 8.8.59301990400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 409 | Data not computed | ||||||
| 761 | Data not computed | ||||||