Normalized defining polynomial
\( x^{16} - 2 x^{15} + 44 x^{14} - 146 x^{13} - 143 x^{12} - 2446 x^{11} - 22188 x^{10} + 11597 x^{9} - 13152 x^{8} - 120622 x^{7} + 704747 x^{6} - 283428 x^{5} + 1781862 x^{4} + 3176965 x^{3} - 13000438 x^{2} + 10197497 x - 2299691 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(83680629612698426645202702769=17^{14}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{560114} a^{14} - \frac{22601}{280057} a^{13} + \frac{89811}{560114} a^{12} - \frac{116237}{560114} a^{11} + \frac{43601}{280057} a^{10} - \frac{107919}{560114} a^{9} + \frac{265103}{560114} a^{8} + \frac{11725}{280057} a^{7} - \frac{164617}{560114} a^{6} + \frac{269805}{560114} a^{5} + \frac{16944}{280057} a^{4} - \frac{246915}{560114} a^{3} - \frac{193257}{560114} a^{2} + \frac{32052}{280057} a + \frac{127207}{560114}$, $\frac{1}{115416946783557583875847812270893446736552400410542} a^{15} + \frac{5846282952552811846434861837048588056556459}{115416946783557583875847812270893446736552400410542} a^{14} - \frac{12100013917730123700670629108505951704867598566825}{57708473391778791937923906135446723368276200205271} a^{13} + \frac{401408463785508034553097253914771647030210029401}{57708473391778791937923906135446723368276200205271} a^{12} + \frac{8593923115323968370515998987402101415082097924167}{115416946783557583875847812270893446736552400410542} a^{11} + \frac{4732398249443981190757310472449559731541839666573}{57708473391778791937923906135446723368276200205271} a^{10} - \frac{7889687247639629891203562387138926450337648346361}{57708473391778791937923906135446723368276200205271} a^{9} + \frac{7500169481824640324885396987354403721575801958427}{115416946783557583875847812270893446736552400410542} a^{8} + \frac{13230106618233502518192304334283548167592018215384}{57708473391778791937923906135446723368276200205271} a^{7} + \frac{11844724203832755578196640442185451670731605446796}{57708473391778791937923906135446723368276200205271} a^{6} - \frac{34762897759647826561474822617773087163409902796349}{115416946783557583875847812270893446736552400410542} a^{5} + \frac{27072641105161564717095151975988126423035006805229}{57708473391778791937923906135446723368276200205271} a^{4} - \frac{13565356109391863956473576910449277764657793596146}{57708473391778791937923906135446723368276200205271} a^{3} - \frac{31303661816470154051665586271455350312450555563239}{115416946783557583875847812270893446736552400410542} a^{2} + \frac{9876488952850015211777681041761457383679550240415}{57708473391778791937923906135446723368276200205271} a + \frac{36384036901906265139547032841174080554610375288939}{115416946783557583875847812270893446736552400410542}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 304838967.255 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T258):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.4.289276043966137.1, \(\Q(\zeta_{17})^+\), 8.4.17016237880361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |