Normalized defining polynomial
\( x^{16} + 2 x^{14} - 20 x^{13} - 13 x^{12} - 16 x^{11} + 114 x^{10} + 144 x^{9} + 24 x^{8} - 296 x^{7} - 306 x^{6} + 44 x^{5} + 258 x^{4} + 112 x^{3} - 68 x^{2} - 28 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(836463237075121995776=2^{32}\cdot 41^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{37} a^{14} + \frac{18}{37} a^{13} - \frac{1}{37} a^{12} - \frac{4}{37} a^{11} - \frac{17}{37} a^{10} - \frac{13}{37} a^{9} - \frac{8}{37} a^{7} - \frac{9}{37} a^{6} + \frac{12}{37} a^{5} + \frac{4}{37} a^{4} + \frac{3}{37} a^{3} + \frac{3}{37} a^{2} - \frac{1}{37} a + \frac{6}{37}$, $\frac{1}{423252673751269} a^{15} - \frac{1316590974411}{423252673751269} a^{14} + \frac{198852422410937}{423252673751269} a^{13} + \frac{50959893837159}{423252673751269} a^{12} + \frac{65847099540938}{423252673751269} a^{11} + \frac{869101520258}{11439261452737} a^{10} - \frac{15346725069043}{423252673751269} a^{9} - \frac{154355256442429}{423252673751269} a^{8} + \frac{36250397742026}{423252673751269} a^{7} - \frac{49820336994420}{423252673751269} a^{6} - \frac{26861235226875}{423252673751269} a^{5} - \frac{184303603038672}{423252673751269} a^{4} + \frac{110039113586365}{423252673751269} a^{3} + \frac{72865548240742}{423252673751269} a^{2} - \frac{74728804273467}{423252673751269} a - \frac{125820432552387}{423252673751269}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25508.578859 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.2624.1, 8.8.282300416.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $41$ | 41.8.0.1 | $x^{8} - x + 12$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 41.8.7.8 | $x^{8} + 11477376$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |