Normalized defining polynomial
\( x^{16} - 2 x^{15} + 90 x^{14} - 286 x^{13} - 2072 x^{12} + 8650 x^{11} - 99203 x^{10} + 272878 x^{9} - 348651 x^{8} - 4611138 x^{7} + 59898657 x^{6} - 42000364 x^{5} - 24483833 x^{4} + 269660476 x^{3} - 6683215296 x^{2} + 3767796992 x + 5374176512 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(831204768973346090928597984067970713681=23^{12}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $270.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{944} a^{14} - \frac{55}{472} a^{13} + \frac{31}{472} a^{12} - \frac{29}{472} a^{11} - \frac{9}{59} a^{10} + \frac{11}{472} a^{9} + \frac{113}{944} a^{8} + \frac{57}{472} a^{7} + \frac{421}{944} a^{6} + \frac{53}{472} a^{5} - \frac{307}{944} a^{4} - \frac{39}{236} a^{3} + \frac{195}{944} a^{2} - \frac{21}{118} a + \frac{26}{59}$, $\frac{1}{509032613714421296422140438830471539673459454460611293085227746497088} a^{15} + \frac{1986345009741155877474973488053308242869952001462327642178426513}{4313835709444248274763902023987046946385249614072977060044302936416} a^{14} - \frac{1726796668318128278729972450737466772415983717108253348744661154011}{254516306857210648211070219415235769836729727230305646542613873248544} a^{13} + \frac{12206940095194119067989210007232861034453747330915354531857024577633}{254516306857210648211070219415235769836729727230305646542613873248544} a^{12} + \frac{4932918720929196167644354486119393320678250749136101220119993723367}{63629076714302662052767554853808942459182431807576411635653468312136} a^{11} + \frac{59259457373230287106542155431584599015055441814748917641102204947741}{254516306857210648211070219415235769836729727230305646542613873248544} a^{10} + \frac{80136783186764315877492209985533148597191644703736770618507288675677}{509032613714421296422140438830471539673459454460611293085227746497088} a^{9} - \frac{21705359483683919000004763723737292703531138407569372344861012098605}{254516306857210648211070219415235769836729727230305646542613873248544} a^{8} + \frac{23151200003366166011351206099555706867565601941328021331655729714357}{509032613714421296422140438830471539673459454460611293085227746497088} a^{7} - \frac{43786270250021244087833603639224831065914083884239041136047545347541}{254516306857210648211070219415235769836729727230305646542613873248544} a^{6} - \frac{192082940320750127996694742917226339319944588237988666983292592480399}{509032613714421296422140438830471539673459454460611293085227746497088} a^{5} + \frac{14913436100879644550575342878069576648521965878069245832040641893759}{127258153428605324105535109707617884918364863615152823271306936624272} a^{4} - \frac{77704979492503303144810563470144834752765652936848054087250468655769}{509032613714421296422140438830471539673459454460611293085227746497088} a^{3} - \frac{930616272567331965515986314802569650054044999211331402251677390311}{127258153428605324105535109707617884918364863615152823271306936624272} a^{2} + \frac{2188714497133286554815060570875156641566208285092631164393969097751}{31814538357151331026383777426904471229591215903788205817826734156068} a - \frac{2142080464749929686446109829063840662618536825077334966063234365079}{7953634589287832756595944356726117807397803975947051454456683539017}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9032154107020 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.54500230757132921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |