Normalized defining polynomial
\( x^{16} - 6 x^{15} - 19 x^{14} + 105 x^{13} - 37 x^{12} + 1620 x^{11} - 3133 x^{10} - 16161 x^{9} + 16123 x^{8} + 55743 x^{7} + 14233 x^{6} - 83412 x^{5} - 113170 x^{4} + 4836 x^{3} + 39049 x^{2} - 12594 x - 5129 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(826443003617417898900549004041=3^{12}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1229624425791640105004594150517815905517} a^{15} + \frac{23465798972543656003256449793999519683}{1229624425791640105004594150517815905517} a^{14} - \frac{291331717717700033613282857861327614877}{1229624425791640105004594150517815905517} a^{13} - \frac{258804998749309737524477384078255380506}{1229624425791640105004594150517815905517} a^{12} - \frac{464216801883741823550199638799302291468}{1229624425791640105004594150517815905517} a^{11} + \frac{8391787859998347609757877002759664771}{53461931556158265434982354370339821979} a^{10} + \frac{241297399171699038908240186161340257738}{1229624425791640105004594150517815905517} a^{9} - \frac{350847097587027272629792972252066427187}{1229624425791640105004594150517815905517} a^{8} + \frac{20848020112836954946774656373558474954}{1229624425791640105004594150517815905517} a^{7} - \frac{321613825707977565953390623310388759339}{1229624425791640105004594150517815905517} a^{6} + \frac{365873439753561650066385323136409132567}{1229624425791640105004594150517815905517} a^{5} + \frac{16482693483633764371166989157356288514}{1229624425791640105004594150517815905517} a^{4} + \frac{588763646437183611068470615706841644292}{1229624425791640105004594150517815905517} a^{3} + \frac{192575227492347971449840262956404201884}{1229624425791640105004594150517815905517} a^{2} - \frac{76655874489217882981844134090441370754}{1229624425791640105004594150517815905517} a + \frac{6843193778382876999354992851942587411}{53461931556158265434982354370339821979}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 847278146.588 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.15775096184361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 41 | Data not computed | ||||||