Normalized defining polynomial
\( x^{16} - 6 x^{15} - 7 x^{14} + 128 x^{13} - 289 x^{12} - 276 x^{11} + 2240 x^{10} - 3291 x^{9} - 1401 x^{8} + 10758 x^{7} - 13600 x^{6} + 2377 x^{5} + 12566 x^{4} - 16359 x^{3} + 10412 x^{2} - 3423 x + 441 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81925410828566900634765625=5^{14}\cdot 41^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} + \frac{5}{11} a^{12} + \frac{4}{11} a^{11} + \frac{4}{11} a^{10} + \frac{5}{11} a^{9} - \frac{3}{11} a^{8} - \frac{4}{11} a^{7} + \frac{2}{11} a^{6} - \frac{3}{11} a^{5} + \frac{2}{11} a^{4} - \frac{1}{11} a^{3} - \frac{3}{11} a - \frac{1}{11}$, $\frac{1}{2339578675673569264978659} a^{15} - \frac{741086587175217818740}{779859558557856421659553} a^{14} - \frac{51820459153592659391107}{334225525096224180711237} a^{13} - \frac{689892220462009298501143}{2339578675673569264978659} a^{12} - \frac{734032190634041962541398}{2339578675673569264978659} a^{11} - \frac{234417742509543159465522}{779859558557856421659553} a^{10} - \frac{29579920014417272427439}{334225525096224180711237} a^{9} + \frac{259782455876129716806446}{779859558557856421659553} a^{8} - \frac{275502315849457691778495}{779859558557856421659553} a^{7} + \frac{172931398248808221911247}{779859558557856421659553} a^{6} + \frac{791734958180646143795405}{2339578675673569264978659} a^{5} + \frac{175769473671028497384961}{2339578675673569264978659} a^{4} - \frac{583894617417796166037667}{2339578675673569264978659} a^{3} + \frac{53766119057249033589531}{111408508365408060237079} a^{2} - \frac{773630642790923773638325}{2339578675673569264978659} a - \frac{10360994973108436200587}{111408508365408060237079}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15795135.8694 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{205}) \), \(\Q(\sqrt{41}) \), 4.4.5125.1 x2, 4.4.210125.1 x2, \(\Q(\sqrt{5}, \sqrt{41})\), 8.8.44152515625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.8.6.2 | $x^{8} + 943 x^{4} + 242064$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 41.8.4.1 | $x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |