Properties

Label 16.8.81606169470...0000.3
Degree $16$
Signature $[8, 4]$
Discriminant $2^{44}\cdot 5^{10}\cdot 41^{6}$
Root discriminant $74.04$
Ramified primes $2, 5, 41$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T869

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![42025, 0, 840500, 0, -1255420, 0, 369820, 0, 25566, 0, -7924, 0, -204, 0, 36, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 36*x^14 - 204*x^12 - 7924*x^10 + 25566*x^8 + 369820*x^6 - 1255420*x^4 + 840500*x^2 + 42025)
 
gp: K = bnfinit(x^16 + 36*x^14 - 204*x^12 - 7924*x^10 + 25566*x^8 + 369820*x^6 - 1255420*x^4 + 840500*x^2 + 42025, 1)
 

Normalized defining polynomial

\( x^{16} + 36 x^{14} - 204 x^{12} - 7924 x^{10} + 25566 x^{8} + 369820 x^{6} - 1255420 x^{4} + 840500 x^{2} + 42025 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(816061694707436093440000000000=2^{44}\cdot 5^{10}\cdot 41^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $74.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{40} a^{8} - \frac{1}{20} a^{6} - \frac{1}{10} a^{4} + \frac{1}{4} a^{2} - \frac{1}{8}$, $\frac{1}{40} a^{9} - \frac{1}{20} a^{7} - \frac{1}{10} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{120} a^{10} + \frac{1}{60} a^{6} - \frac{1}{15} a^{4} - \frac{7}{24} a^{2} + \frac{1}{3}$, $\frac{1}{240} a^{11} - \frac{1}{240} a^{10} - \frac{1}{80} a^{9} - \frac{1}{80} a^{8} - \frac{11}{120} a^{7} - \frac{13}{120} a^{6} + \frac{17}{120} a^{5} + \frac{5}{24} a^{4} - \frac{7}{48} a^{3} + \frac{7}{48} a^{2} + \frac{5}{48} a - \frac{11}{48}$, $\frac{1}{9840} a^{12} + \frac{3}{820} a^{10} + \frac{83}{9840} a^{8} + \frac{7}{615} a^{6} + \frac{1663}{9840} a^{4} - \frac{5}{12} a^{2} - \frac{5}{16}$, $\frac{1}{9840} a^{13} - \frac{1}{1968} a^{11} - \frac{1}{240} a^{10} - \frac{1}{246} a^{9} - \frac{1}{80} a^{8} - \frac{159}{1640} a^{7} - \frac{13}{120} a^{6} - \frac{1207}{9840} a^{5} + \frac{5}{24} a^{4} + \frac{11}{48} a^{3} - \frac{17}{48} a^{2} + \frac{11}{24} a + \frac{13}{48}$, $\frac{1}{5440871149750560} a^{14} - \frac{136579425703}{5440871149750560} a^{12} + \frac{98785938367}{49016857204960} a^{10} - \frac{26839549090759}{5440871149750560} a^{8} - \frac{568655854282021}{5440871149750560} a^{6} + \frac{25621970696615}{1088174229950112} a^{4} - \frac{2663522194411}{8846944958944} a^{2} - \frac{2518879458569}{26540834876832}$, $\frac{1}{5440871149750560} a^{15} - \frac{136579425703}{5440871149750560} a^{13} + \frac{98785938367}{49016857204960} a^{11} - \frac{26839549090759}{5440871149750560} a^{9} - \frac{568655854282021}{5440871149750560} a^{7} + \frac{25621970696615}{1088174229950112} a^{5} + \frac{1759950285061}{8846944958944} a^{3} - \frac{1}{2} a^{2} + \frac{10751537979847}{26540834876832} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1571249814.73 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T869:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 41 conjugacy class representatives for t16n869
Character table for t16n869 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), 4.4.262400.1, 4.4.262400.2, \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.68853760000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$41$$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.4.3.1$x^{4} - 41$$4$$1$$3$$C_4$$[\ ]_{4}$
41.4.3.1$x^{4} - 41$$4$$1$$3$$C_4$$[\ ]_{4}$