Normalized defining polynomial
\( x^{16} - 48 x^{14} - 168 x^{13} - 126 x^{12} + 6120 x^{11} + 39236 x^{10} + 32604 x^{9} - 395743 x^{8} - 2599968 x^{7} - 7009552 x^{6} + 4897716 x^{5} + 71862392 x^{4} + 209915832 x^{3} + 352409812 x^{2} + 298136964 x + 125995759 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8146439662885973461565440000000000=2^{32}\cdot 5^{10}\cdot 761^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{1522} a^{12} - \frac{73}{761} a^{11} - \frac{43}{1522} a^{10} - \frac{187}{761} a^{9} + \frac{9}{1522} a^{8} + \frac{176}{761} a^{7} - \frac{661}{1522} a^{6} - \frac{369}{761} a^{5} - \frac{271}{1522} a^{4} + \frac{258}{761} a^{3} + \frac{653}{1522} a^{2} - \frac{259}{761} a + \frac{66}{761}$, $\frac{1}{1522} a^{13} - \frac{51}{1522} a^{11} + \frac{197}{1522} a^{10} + \frac{197}{1522} a^{9} + \frac{72}{761} a^{8} + \frac{505}{1522} a^{7} - \frac{597}{1522} a^{6} + \frac{43}{1522} a^{5} + \frac{261}{761} a^{4} - \frac{111}{1522} a^{3} - \frac{305}{1522} a^{2} + \frac{302}{761} a - \frac{257}{761}$, $\frac{1}{10654} a^{14} + \frac{1}{10654} a^{13} - \frac{1}{10654} a^{12} - \frac{305}{10654} a^{11} - \frac{995}{10654} a^{10} + \frac{1427}{10654} a^{9} + \frac{2621}{10654} a^{8} + \frac{3049}{10654} a^{7} + \frac{641}{10654} a^{6} + \frac{4759}{10654} a^{5} - \frac{4007}{10654} a^{4} + \frac{271}{10654} a^{3} - \frac{310}{761} a^{2} - \frac{2251}{5327} a - \frac{1}{5327}$, $\frac{1}{389945064141077609097797889847871663009038846} a^{15} + \frac{1892787161415974471270639016522624889477}{55706437734439658442542555692553094715576978} a^{14} - \frac{106914357547989864846337346486340832462441}{389945064141077609097797889847871663009038846} a^{13} + \frac{26460325782391397031672235023103724578614}{194972532070538804548898944923935831504519423} a^{12} - \frac{50314002883480559085520538135510192093996627}{389945064141077609097797889847871663009038846} a^{11} - \frac{5754236249937334231243062116367013904846136}{27853218867219829221271277846276547357788489} a^{10} + \frac{19915290906513291603679565316419252289681765}{389945064141077609097797889847871663009038846} a^{9} - \frac{83382313863323430772057158055002474564571665}{389945064141077609097797889847871663009038846} a^{8} + \frac{16757935683531647713568821938104755778949967}{55706437734439658442542555692553094715576978} a^{7} + \frac{80401381638237065441703075409428749375823365}{194972532070538804548898944923935831504519423} a^{6} - \frac{184409875851035674476692599026705873501231873}{389945064141077609097797889847871663009038846} a^{5} + \frac{94491334326746925287607682288570468922836181}{389945064141077609097797889847871663009038846} a^{4} - \frac{78381303108466407862418191843754788893865374}{194972532070538804548898944923935831504519423} a^{3} + \frac{111647967635790888922431312394396332596158923}{389945064141077609097797889847871663009038846} a^{2} + \frac{6183723327765370644850387809234259300616071}{194972532070538804548898944923935831504519423} a - \frac{106749190669198731611013184790736505099493935}{389945064141077609097797889847871663009038846}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21894684672.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n869 |
| Character table for t16n869 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.4.1217600.3, \(\Q(\sqrt{2}, \sqrt{5})\), 4.4.48704.1, 8.8.1482549760000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.13 | $x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ |
| 2.8.16.16 | $x^{8} + 2 x^{6} + 4 x^{5} + 6 x^{4} + 8 x^{3} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 761 | Data not computed | ||||||