Normalized defining polynomial
\( x^{16} + 40 x^{14} - 168 x^{13} - 346 x^{12} - 5112 x^{11} - 15384 x^{10} + 49452 x^{9} + 148909 x^{8} + 1730976 x^{7} + 2055924 x^{6} - 3305052 x^{5} - 12392604 x^{4} - 97021992 x^{3} + 44381336 x^{2} + 147258708 x - 5857289 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8146439662885973461565440000000000=2^{32}\cdot 5^{10}\cdot 761^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{1522} a^{12} + \frac{73}{761} a^{11} + \frac{45}{1522} a^{10} - \frac{51}{1522} a^{9} - \frac{123}{1522} a^{8} + \frac{249}{761} a^{7} - \frac{643}{1522} a^{6} - \frac{665}{1522} a^{5} + \frac{525}{1522} a^{4} + \frac{231}{761} a^{3} + \frac{643}{1522} a^{2} + \frac{633}{1522} a + \frac{256}{761}$, $\frac{1}{1522} a^{13} + \frac{37}{1522} a^{11} + \frac{114}{761} a^{10} - \frac{287}{1522} a^{9} + \frac{96}{761} a^{8} - \frac{295}{1522} a^{7} - \frac{195}{761} a^{6} + \frac{207}{1522} a^{5} - \frac{44}{761} a^{4} + \frac{159}{1522} a^{3} + \frac{179}{761} a^{2} - \frac{293}{761} a - \frac{87}{761}$, $\frac{1}{7610} a^{14} - \frac{1}{3805} a^{13} - \frac{1}{3805} a^{12} + \frac{274}{3805} a^{11} - \frac{43}{1522} a^{10} - \frac{105}{761} a^{9} - \frac{1209}{7610} a^{8} - \frac{248}{761} a^{7} + \frac{2473}{7610} a^{6} + \frac{32}{761} a^{5} + \frac{3451}{7610} a^{4} + \frac{143}{3805} a^{3} + \frac{889}{3805} a^{2} + \frac{1473}{3805} a - \frac{3639}{7610}$, $\frac{1}{8096778031556501885301911519874564238707257470} a^{15} + \frac{214157824622514698303538747160918205224658}{4048389015778250942650955759937282119353628735} a^{14} - \frac{1021240119260118165127773470509989473184099}{4048389015778250942650955759937282119353628735} a^{13} - \frac{1040678537929965937538879142268132778880213}{8096778031556501885301911519874564238707257470} a^{12} + \frac{1129037688457031912963513939547730013427204189}{8096778031556501885301911519874564238707257470} a^{11} + \frac{360503108614877326670408599458825144273158849}{1619355606311300377060382303974912847741451494} a^{10} - \frac{543835421602217267240808278772815829587290962}{4048389015778250942650955759937282119353628735} a^{9} + \frac{1576205223662668727913390603078691752826627193}{8096778031556501885301911519874564238707257470} a^{8} - \frac{125730279635853100620661852349441104854413807}{261186388114725867267803597415308523829266370} a^{7} + \frac{526133065678704209812188438840635063875815279}{8096778031556501885301911519874564238707257470} a^{6} + \frac{1051326210306496203541398033697815941947625038}{4048389015778250942650955759937282119353628735} a^{5} - \frac{1543861831422739589654691155261906364698711261}{8096778031556501885301911519874564238707257470} a^{4} - \frac{403805369274431444077782813591742273274252102}{4048389015778250942650955759937282119353628735} a^{3} + \frac{605165394662622260723839237675300790014639677}{1619355606311300377060382303974912847741451494} a^{2} + \frac{364974030114084138422676945121594914007864082}{4048389015778250942650955759937282119353628735} a + \frac{1314653590856962935694612511147091139306557984}{4048389015778250942650955759937282119353628735}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24813244748.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n869 |
| Character table for t16n869 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.4.1217600.3, 4.4.48704.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.1482549760000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.16 | $x^{8} + 2 x^{6} + 4 x^{5} + 6 x^{4} + 8 x^{3} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ |
| 2.8.16.13 | $x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 761 | Data not computed | ||||||