Normalized defining polynomial
\( x^{16} - 3 x^{15} + 5 x^{14} + 113 x^{13} - 565 x^{12} + 342 x^{11} + 4386 x^{10} - 28831 x^{9} + 28939 x^{8} + 97286 x^{7} - 399834 x^{6} + 1198290 x^{5} - 401729 x^{4} - 3886533 x^{3} + 10222736 x^{2} - 13009425 x + 6305231 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81000012766225321509609765625=5^{8}\cdot 29^{10}\cdot 149^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{11} - \frac{2}{7} a^{10} + \frac{3}{7} a^{9} - \frac{1}{7} a^{6} + \frac{2}{7} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{13} - \frac{3}{7} a^{11} - \frac{2}{7} a^{10} - \frac{3}{7} a^{9} - \frac{1}{7} a^{7} + \frac{3}{7} a^{6} - \frac{3}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{14} + \frac{1}{7} a^{11} - \frac{2}{7} a^{10} + \frac{2}{7} a^{9} - \frac{1}{7} a^{8} + \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{2}{7} a^{5} - \frac{1}{7} a^{3} - \frac{2}{7} a^{2} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{899715865586593632567019090259738562047364619} a^{15} + \frac{59840005323576442930248496984013675029312392}{899715865586593632567019090259738562047364619} a^{14} + \frac{8814383020833608718155921871174065379577784}{128530837940941947509574155751391223149623517} a^{13} + \frac{2419761457585442908702939804655426636298928}{128530837940941947509574155751391223149623517} a^{12} + \frac{345093044685010113254074772272223935916536511}{899715865586593632567019090259738562047364619} a^{11} - \frac{348147415644817628160319544202953785124743577}{899715865586593632567019090259738562047364619} a^{10} - \frac{209552028505274103354193402428263912696619378}{899715865586593632567019090259738562047364619} a^{9} + \frac{156067859557645425762787480495109766767665849}{899715865586593632567019090259738562047364619} a^{8} - \frac{211791142494423585449281359733519582592976223}{899715865586593632567019090259738562047364619} a^{7} + \frac{355803476870566693644583944572441751523074623}{899715865586593632567019090259738562047364619} a^{6} - \frac{342317185554338086461687256586664107845012277}{899715865586593632567019090259738562047364619} a^{5} + \frac{34394219033723040341721987510462828251142136}{128530837940941947509574155751391223149623517} a^{4} - \frac{347481407925156714074681897973508691397785178}{899715865586593632567019090259738562047364619} a^{3} - \frac{219828255336441322470681274490436285177787502}{899715865586593632567019090259738562047364619} a^{2} + \frac{198377662787575998275825132303381440674362427}{899715865586593632567019090259738562047364619} a + \frac{45444802580296620845596167252989971207927177}{899715865586593632567019090259738562047364619}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 107561293.978 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.C_2^2:D_4$ (as 16T305):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_4.C_2^2:D_4$ |
| Character table for $C_4.C_2^2:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{145}) \), 4.4.725.1 x2, 4.4.4205.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 149 | Data not computed | ||||||