Normalized defining polynomial
\( x^{16} - 6 x^{15} - 16 x^{14} + 144 x^{13} - 13 x^{12} - 1558 x^{11} + 611 x^{10} + 10784 x^{9} + 2731 x^{8} - 52783 x^{7} - 39872 x^{6} + 176175 x^{5} + 179631 x^{4} - 219878 x^{3} - 286748 x^{2} - 36008 x + 95216 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(80706182379542447070058203125=5^{8}\cdot 11^{2}\cdot 19^{2}\cdot 29^{9}\cdot 571^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 19, 29, 571$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{13} + \frac{1}{3} a^{11} - \frac{1}{2} a^{9} - \frac{1}{3} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{1092} a^{14} + \frac{1}{91} a^{13} - \frac{1}{273} a^{12} - \frac{16}{91} a^{11} - \frac{5}{52} a^{10} + \frac{103}{273} a^{9} - \frac{37}{1092} a^{8} + \frac{163}{546} a^{7} - \frac{233}{1092} a^{6} + \frac{93}{364} a^{5} - \frac{29}{546} a^{4} - \frac{449}{1092} a^{3} - \frac{25}{364} a^{2} + \frac{79}{273} a + \frac{27}{91}$, $\frac{1}{750215587879322180501427603481280952} a^{15} + \frac{39329064614576171141474587005545}{125035931313220363416904600580213492} a^{14} - \frac{3537153712600721644105670166948971}{62517965656610181708452300290106746} a^{13} - \frac{2722596590834005368337309995858592}{31258982828305090854226150145053373} a^{12} - \frac{1123768867332653635237642270581283}{107173655411331740071632514783040136} a^{11} - \frac{102374631729309919689857405884467433}{375107793939661090250713801740640476} a^{10} + \frac{118591442288161280203578320276560559}{750215587879322180501427603481280952} a^{9} + \frac{13160089267555480623116642398424839}{62517965656610181708452300290106746} a^{8} + \frac{113122436259349284409201582099193085}{250071862626440726833809201160426984} a^{7} - \frac{171398087016026736034245756285321115}{750215587879322180501427603481280952} a^{6} + \frac{9059316434605193206603306792391687}{31258982828305090854226150145053373} a^{5} + \frac{241621943923930855000765355256649411}{750215587879322180501427603481280952} a^{4} + \frac{91488342334845387512021095167782579}{750215587879322180501427603481280952} a^{3} - \frac{75273840367395123661060340685946835}{375107793939661090250713801740640476} a^{2} - \frac{597706035581984879407404439008406}{2404537140638853142632780780388721} a - \frac{1895791361617651304340126413313853}{13396706926416467508954064347880017}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 268023448.09 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8192 |
| The 104 conjugacy class representatives for t16n1702 are not computed |
| Character table for t16n1702 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.4.5702505625.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $16$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.8.0.1 | $x^{8} - x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.8.4.2 | $x^{8} - 24389 x^{2} + 13438339$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 571 | Data not computed | ||||||