Normalized defining polynomial
\( x^{16} - 5 x^{15} - 934 x^{14} + 2223 x^{13} + 245657 x^{12} + 712517 x^{11} - 19740121 x^{10} - 222937160 x^{9} - 16641328 x^{8} + 15221652842 x^{7} + 49129870727 x^{6} - 154664551218 x^{5} - 2055904962519 x^{4} - 14072956021738 x^{3} + 25781607633385 x^{2} + 82626919055977 x - 179786105721269 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(803416469975725073264940954221144185207724929=37^{12}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $640.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{1515233047980573122969499301144147610332089543974057334474786705772288429144105855057247273694154225272644} a^{15} + \frac{42193736106232467080342581976458772610691619296208333341291937726146556298019681258143393237190664112227}{378808261995143280742374825286036902583022385993514333618696676443072107286026463764311818423538556318161} a^{14} - \frac{55378613380311861169006297691743347923780078056278183602950847920880688120199883964900055559115923476819}{757616523990286561484749650572073805166044771987028667237393352886144214572052927528623636847077112636322} a^{13} - \frac{119419154068396565559630200865385414456543191135766622461295791148632983163524232684716427789066335260521}{1515233047980573122969499301144147610332089543974057334474786705772288429144105855057247273694154225272644} a^{12} - \frac{157828142004005428836247046188003668767541665933682299638593087162538610529377068710020934337361862727105}{1515233047980573122969499301144147610332089543974057334474786705772288429144105855057247273694154225272644} a^{11} + \frac{219100546596877621543942059983334660253586067837410031610682986378138211505541675049491554763729811051529}{1515233047980573122969499301144147610332089543974057334474786705772288429144105855057247273694154225272644} a^{10} + \frac{51394596185099619036795286884492481332936189502649904344261000916209087332791577625602652814970523008241}{757616523990286561484749650572073805166044771987028667237393352886144214572052927528623636847077112636322} a^{9} - \frac{88220960190193091276170827756169046167159545750153145504896117248677265390114242563430671035707216965000}{378808261995143280742374825286036902583022385993514333618696676443072107286026463764311818423538556318161} a^{8} + \frac{596132481133427669351428312266264224943361492799341533009288644442589949641882770671198261327339224086349}{1515233047980573122969499301144147610332089543974057334474786705772288429144105855057247273694154225272644} a^{7} + \frac{179334556802908974408474921342467320999033001736636549197854300088194194667714195434908850912314719862143}{1515233047980573122969499301144147610332089543974057334474786705772288429144105855057247273694154225272644} a^{6} + \frac{531738049893179781570521055184346272398690564997033770196768167958830696951581265405215674197410779895339}{1515233047980573122969499301144147610332089543974057334474786705772288429144105855057247273694154225272644} a^{5} + \frac{133674841872178555535879864477220428106171745156643839194085459437159197925631363847819076678381636479123}{378808261995143280742374825286036902583022385993514333618696676443072107286026463764311818423538556318161} a^{4} - \frac{120356961387667331042132415986617095502111616494408414321676172094317137206419637331225148936135048931419}{757616523990286561484749650572073805166044771987028667237393352886144214572052927528623636847077112636322} a^{3} - \frac{26989791073766238634003444414597459585203581164605443265122954671960045320493557476418292776565169627977}{1515233047980573122969499301144147610332089543974057334474786705772288429144105855057247273694154225272644} a^{2} - \frac{61339143182481808288754538652502113844096019361736022661309839959091098226098357847906630307013762457835}{1515233047980573122969499301144147610332089543974057334474786705772288429144105855057247273694154225272644} a - \frac{130167312370373455825199196687600201793066701469748123780324127798116596497248520648404113610250655237677}{378808261995143280742374825286036902583022385993514333618696676443072107286026463764311818423538556318161}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7995947287160000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}.C_2$ (as 16T40):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $OD_{16}.C_2$ |
| Character table for $OD_{16}.C_2$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), \(\Q(\sqrt{2701}) \), \(\Q(\sqrt{37}) \), 4.4.532564273.1, 4.4.389017.1, \(\Q(\sqrt{37}, \sqrt{73})\), 8.8.283624704876018529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| $73$ | 73.8.7.1 | $x^{8} - 73$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.1 | $x^{8} - 73$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |