Normalized defining polynomial
\( x^{16} - 4 x^{15} - 29 x^{14} + 119 x^{13} - 185649 x^{12} + 1330723 x^{11} - 7413755 x^{10} + 134162437 x^{9} + 7467374561 x^{8} - 35610842313 x^{7} - 109039674744 x^{6} - 3976708155048 x^{5} - 75494837260791 x^{4} + 608115581856810 x^{3} + 2681157447026307 x^{2} - 18957448548520857 x + 31014141249191103 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(80291031759964036646878404141998486437104406229473=37^{14}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1315.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{4}{9} a^{8} - \frac{4}{9} a^{7} + \frac{1}{9} a^{5} - \frac{2}{9} a^{4} - \frac{2}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{11} - \frac{1}{27} a^{10} + \frac{4}{27} a^{9} - \frac{13}{27} a^{8} - \frac{8}{27} a^{6} - \frac{11}{27} a^{5} + \frac{7}{27} a^{4} + \frac{8}{27} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{227286} a^{12} - \frac{1277}{113643} a^{11} + \frac{10513}{227286} a^{10} - \frac{17420}{113643} a^{9} + \frac{7870}{37881} a^{8} + \frac{3038}{113643} a^{7} - \frac{27256}{113643} a^{6} + \frac{84187}{227286} a^{5} + \frac{80651}{227286} a^{4} - \frac{13277}{75762} a^{3} - \frac{5021}{25254} a^{2} + \frac{86}{183} a + \frac{309}{2806}$, $\frac{1}{12955302} a^{13} - \frac{11}{6477651} a^{12} - \frac{5107}{563274} a^{11} - \frac{143090}{6477651} a^{10} - \frac{76753}{2159217} a^{9} - \frac{2593822}{6477651} a^{8} + \frac{2702549}{6477651} a^{7} - \frac{2048423}{12955302} a^{6} + \frac{4341047}{12955302} a^{5} + \frac{25753}{159942} a^{4} + \frac{2401}{159942} a^{3} + \frac{116692}{239913} a^{2} + \frac{22481}{159942} a - \frac{595}{1403}$, $\frac{1}{205438158028947006} a^{14} + \frac{7832199497}{205438158028947006} a^{13} + \frac{39084244784}{102719079014473503} a^{12} - \frac{1109821385604481}{205438158028947006} a^{11} + \frac{154872902862953}{2977364609115174} a^{10} + \frac{4037263918212263}{102719079014473503} a^{9} + \frac{14828291682974876}{102719079014473503} a^{8} + \frac{51450201998247415}{205438158028947006} a^{7} - \frac{22034590033093571}{102719079014473503} a^{6} + \frac{368017439239439}{22826462003216334} a^{5} + \frac{3631545328004999}{22826462003216334} a^{4} - \frac{7393405998103}{200232122835231} a^{3} - \frac{310568034777889}{1268136777956463} a^{2} - \frac{337588367880439}{845424518637642} a - \frac{5715515126707}{14832009098906}$, $\frac{1}{3286653989753598213525212953135904316762640457540776615458002691098056206309051004998} a^{15} + \frac{1076797454948807066090128612346523197556528396179879015863813848109}{1643326994876799106762606476567952158381320228770388307729001345549028103154525502499} a^{14} + \frac{30824402033048425615794917033137061572227369387264149017295208533779843862731}{3286653989753598213525212953135904316762640457540776615458002691098056206309051004998} a^{13} - \frac{1826804882505063673532079961999588783670359673136690906999543969256182862130300}{1643326994876799106762606476567952158381320228770388307729001345549028103154525502499} a^{12} + \frac{841551479339608399454880254355861727609720699583065662563441354513993611703942594}{547775664958933035587535492189317386127106742923462769243000448516342701051508500833} a^{11} - \frac{75700387011304929558691269162438250004080231653272873066883609543035287743881246902}{1643326994876799106762606476567952158381320228770388307729001345549028103154525502499} a^{10} - \frac{14405706307972406589103723061184512877324862674149825439529337370101716826637681457}{86490894467199952987505604029892218862174748882652016196263228713106742271290815921} a^{9} + \frac{1143553610189907344754474071174604544997449271089806630542629671191384897883001545637}{3286653989753598213525212953135904316762640457540776615458002691098056206309051004998} a^{8} + \frac{820826168878642754632193409888019935375388214537504620555107643073331419956941763373}{3286653989753598213525212953135904316762640457540776615458002691098056206309051004998} a^{7} - \frac{89140028910485039544993615405969897026410875349844412146770875224657423841584867795}{365183776639288690391690328126211590751404495282308512828666965677561800701005667222} a^{6} - \frac{19813794110328529816564051221665786429909133177641498122557766697021092254249627479}{121727925546429563463896776042070530250468165094102837609555655225853933567001889074} a^{5} - \frac{302416511386528920823393203078872360361822031393470894822089471789408973048455477}{20287987591071593910649462673678421708411360849017139601592609204308988927833648179} a^{4} - \frac{17902293135203626301998350241789091853848777916939538405108274954837173466897417651}{40575975182143187821298925347356843416822721698034279203185218408617977855667296358} a^{3} - \frac{535080822552761533361095240730501383485736347085552659079231733558354465425481498}{6762662530357197970216487557892807236137120283005713200530869734769662975944549393} a^{2} - \frac{640341284920102087745046113582913715221962831181214883737401180760947424894319842}{2254220843452399323405495852630935745379040094335237733510289911589887658648183131} a - \frac{17843262277491275690796586015592030639303509273838183311715133887806094949899361}{39547734095656128480798172853174311322439299900618205851057717747191011555231283}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3883759568770000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.532564273.1, 8.8.28344602131194663732673.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 73 | Data not computed | ||||||