Normalized defining polynomial
\( x^{16} - 4 x^{15} - 29 x^{14} + 119 x^{13} - 145134 x^{12} + 234117 x^{11} + 9329744 x^{10} + 67725940 x^{9} + 5939864526 x^{8} - 14853519562 x^{7} - 744609210817 x^{6} - 595121748833 x^{5} - 34266716442 x^{4} + 163951671539017 x^{3} + 1279771953158790 x^{2} - 8572126998875658 x + 21318855083198401 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(80291031759964036646878404141998486437104406229473=37^{14}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1315.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{2} a^{8} + \frac{1}{16} a^{7} + \frac{5}{16} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{3}{16} a^{3} + \frac{7}{16} a^{2} - \frac{1}{2} a - \frac{7}{16}$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} + \frac{3}{32} a^{9} - \frac{7}{64} a^{8} + \frac{11}{32} a^{7} + \frac{13}{64} a^{6} + \frac{3}{16} a^{5} - \frac{25}{64} a^{4} - \frac{3}{32} a^{3} - \frac{1}{64} a^{2} - \frac{31}{64} a + \frac{25}{64}$, $\frac{1}{256} a^{12} + \frac{5}{256} a^{10} - \frac{1}{256} a^{9} + \frac{15}{256} a^{8} - \frac{29}{256} a^{7} + \frac{25}{256} a^{6} + \frac{115}{256} a^{5} - \frac{31}{256} a^{4} + \frac{121}{256} a^{3} - \frac{3}{8} a^{2} + \frac{29}{128} a + \frac{89}{256}$, $\frac{1}{1024} a^{13} + \frac{1}{1024} a^{12} + \frac{5}{1024} a^{11} + \frac{1}{256} a^{10} + \frac{7}{512} a^{9} - \frac{7}{512} a^{8} + \frac{127}{256} a^{7} - \frac{93}{256} a^{6} + \frac{21}{256} a^{5} + \frac{45}{512} a^{4} - \frac{487}{1024} a^{3} - \frac{147}{512} a^{2} + \frac{403}{1024} a + \frac{89}{1024}$, $\frac{1}{162494658012196864} a^{14} + \frac{39085728789657}{81247329006098432} a^{13} + \frac{17554172168251}{81247329006098432} a^{12} + \frac{479401102289785}{162494658012196864} a^{11} - \frac{865809196151351}{81247329006098432} a^{10} + \frac{252516250748115}{5077958062881152} a^{9} - \frac{15370468344842809}{81247329006098432} a^{8} - \frac{9434220081553455}{20311832251524608} a^{7} + \frac{769108861194607}{5077958062881152} a^{6} + \frac{33679013617288215}{81247329006098432} a^{5} - \frac{45562485454425325}{162494658012196864} a^{4} + \frac{60099218757118691}{162494658012196864} a^{3} - \frac{50804846105027123}{162494658012196864} a^{2} - \frac{12224099859712353}{40623664503049216} a - \frac{57494748915182391}{162494658012196864}$, $\frac{1}{4898122987471580560614057025167213966281224758531700037732445438196489015109516379275264} a^{15} + \frac{392411648033765921543917741667074371002035752349581345741524626672035}{4898122987471580560614057025167213966281224758531700037732445438196489015109516379275264} a^{14} - \frac{178133875021508698446035929582441688484767923974339689766660215802278358256321557945}{612265373433947570076757128145901745785153094816462504716555679774561126888689547409408} a^{13} - \frac{934021053734055251389508643716441596520063567262640241736699395098570730206019580097}{4898122987471580560614057025167213966281224758531700037732445438196489015109516379275264} a^{12} - \frac{25332379556513285991468958482390884221836224373929640806153584211369209922363047282069}{4898122987471580560614057025167213966281224758531700037732445438196489015109516379275264} a^{11} - \frac{4688054581566915502157529666737182964037368036692255776626951030278461047228107175863}{2449061493735790280307028512583606983140612379265850018866222719098244507554758189637632} a^{10} + \frac{284220314963933246220438075697559844855160816357235998226238517278950816890429462243143}{2449061493735790280307028512583606983140612379265850018866222719098244507554758189637632} a^{9} - \frac{974500476298894688568568244654067220606400211906719837470688427805572587039389563181237}{2449061493735790280307028512583606983140612379265850018866222719098244507554758189637632} a^{8} + \frac{191724468765661143993290652726623321324161257465479247386864097928850062358433438625093}{612265373433947570076757128145901745785153094816462504716555679774561126888689547409408} a^{7} + \frac{162281727360154862456789601084731756467030273226550787053670563048609966923723642061095}{2449061493735790280307028512583606983140612379265850018866222719098244507554758189637632} a^{6} + \frac{866690608275088494906667787152043734055356529926443239421970873767355260861254841558049}{4898122987471580560614057025167213966281224758531700037732445438196489015109516379275264} a^{5} + \frac{1129235977715534086379604713739801813712105976858990417918604456736377685818480168736275}{2449061493735790280307028512583606983140612379265850018866222719098244507554758189637632} a^{4} - \frac{128423107300357341584818966564249460034741515736027939469699376162159734441831070718749}{306132686716973785038378564072950872892576547408231252358277839887280563444344773704704} a^{3} - \frac{994524867665917736044291053479337161166921196289162518933160147785648532080304079856935}{4898122987471580560614057025167213966281224758531700037732445438196489015109516379275264} a^{2} - \frac{174258168514444067722936770248328480461538920670637444582511469067512968960243601984619}{4898122987471580560614057025167213966281224758531700037732445438196489015109516379275264} a + \frac{2243362997350255145986736631189656601157244058577785909548085241045751367093038325787113}{4898122987471580560614057025167213966281224758531700037732445438196489015109516379275264}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 828352466885000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.532564273.1, 8.8.28344602131194663732673.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 73 | Data not computed | ||||||