Normalized defining polynomial
\( x^{16} - 4 x^{15} - 29 x^{14} + 119 x^{13} - 107320 x^{12} - 46787 x^{11} + 8593 x^{10} + 3398924 x^{9} + 2625021761 x^{8} - 3023072037 x^{7} - 53629386313 x^{6} + 232338128224 x^{5} - 3924866163908 x^{4} - 32893267183391 x^{3} - 53609796972279 x^{2} + 37731456819936 x + 167287637065831 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(80291031759964036646878404141998486437104406229473=37^{14}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1315.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{71017171836890150306} a^{14} + \frac{7632635414447169233}{71017171836890150306} a^{13} - \frac{9184134568998694287}{71017171836890150306} a^{12} - \frac{32313514283711794751}{71017171836890150306} a^{11} - \frac{15718322145611562431}{71017171836890150306} a^{10} - \frac{4981672232783337943}{71017171836890150306} a^{9} + \frac{93083209263417246}{35508585918445075153} a^{8} + \frac{539793392875536063}{1164215931752297546} a^{7} + \frac{2829024127096737337}{71017171836890150306} a^{6} + \frac{19246211657418681781}{71017171836890150306} a^{5} + \frac{26520225606566479739}{71017171836890150306} a^{4} + \frac{27609190371234195691}{71017171836890150306} a^{3} + \frac{4385884288866491041}{35508585918445075153} a^{2} + \frac{30110836892409507797}{71017171836890150306} a + \frac{391306085149197708}{1868872943076056587}$, $\frac{1}{1152872945950047515366348673124809226943363345348961019016901328220544713044602924934834} a^{15} + \frac{2880787794651353782353290292501329401809803856352931479006001300339}{576436472975023757683174336562404613471681672674480509508450664110272356522301462467417} a^{14} - \frac{64734407507626263863437888233034345783458638661597475064822057920745973946724258307804}{576436472975023757683174336562404613471681672674480509508450664110272356522301462467417} a^{13} - \frac{53946822394319386332540868487902658373065281703314096922786790327271215055868092924056}{576436472975023757683174336562404613471681672674480509508450664110272356522301462467417} a^{12} - \frac{63360020293200444700144441096226305725017749826913537645061494346876302408402210779636}{576436472975023757683174336562404613471681672674480509508450664110272356522301462467417} a^{11} - \frac{110496445107537096654609204770611699671448468612647433829877484807921832350401810701248}{576436472975023757683174336562404613471681672674480509508450664110272356522301462467417} a^{10} - \frac{457277852574588835372074296114679795284900639871350160694506315250346310263077557584519}{1152872945950047515366348673124809226943363345348961019016901328220544713044602924934834} a^{9} + \frac{389990096191123764692221103559065954557785558520548695298719238445698014245933828826845}{1152872945950047515366348673124809226943363345348961019016901328220544713044602924934834} a^{8} + \frac{112958259516892179300418541372568271332355813208431511507660137672177200657803940028554}{576436472975023757683174336562404613471681672674480509508450664110272356522301462467417} a^{7} - \frac{139437109771051870645321588687686269044828946294886801687449613747395637495290564183725}{576436472975023757683174336562404613471681672674480509508450664110272356522301462467417} a^{6} - \frac{1788050638681923051992650947703586644526345993490011883554234197131309166663537573281}{30338761735527566193851280871705505972193772246025289974128982321593281922226392761443} a^{5} + \frac{1374566501488927895114106131300905478412155221487386693743737611981493805547901638992}{7296664214873718451685751095726640676856730033854183664663932457092055145851917246423} a^{4} - \frac{499602070203154867256343076479111094471550137351292030864462131445434329025366579435941}{1152872945950047515366348673124809226943363345348961019016901328220544713044602924934834} a^{3} + \frac{284115832514514630747170375878734394740008287458324764412139338231676382342386849069213}{1152872945950047515366348673124809226943363345348961019016901328220544713044602924934834} a^{2} + \frac{248381581108849280193557187186686319236380479393234586212448108794643199790533296357935}{1152872945950047515366348673124809226943363345348961019016901328220544713044602924934834} a - \frac{3984514155444045445928404483761294024399538480076234014728427230248350583931830891400}{30338761735527566193851280871705505972193772246025289974128982321593281922226392761443}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1801777968080000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.532564273.1, 8.8.28344602131194663732673.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 73 | Data not computed | ||||||