Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 126158 x^{12} + 757494 x^{11} - 1225116 x^{10} - 818830 x^{9} + 663628006 x^{8} - 2641265466 x^{7} + 15713408910 x^{6} - 37907570302 x^{5} - 122390139278 x^{4} + 304883890488 x^{3} + 12774229580 x^{2} - 171094769281 x + 55890105463 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(80291031759964036646878404141998486437104406229473=37^{14}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1315.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{37} a^{8} - \frac{4}{37} a^{7} + \frac{7}{37} a^{6} - \frac{7}{37} a^{5} + \frac{9}{37} a^{4} - \frac{11}{37} a^{3} + \frac{12}{37} a^{2} - \frac{7}{37} a + \frac{12}{37}$, $\frac{1}{37} a^{9} - \frac{9}{37} a^{7} - \frac{16}{37} a^{6} + \frac{18}{37} a^{5} - \frac{12}{37} a^{4} + \frac{5}{37} a^{3} + \frac{4}{37} a^{2} - \frac{16}{37} a + \frac{11}{37}$, $\frac{1}{37} a^{10} - \frac{15}{37} a^{7} + \frac{7}{37} a^{6} - \frac{1}{37} a^{5} + \frac{12}{37} a^{4} + \frac{16}{37} a^{3} + \frac{18}{37} a^{2} - \frac{15}{37} a - \frac{3}{37}$, $\frac{1}{37} a^{11} - \frac{16}{37} a^{7} - \frac{7}{37} a^{6} + \frac{18}{37} a^{5} + \frac{3}{37} a^{4} + \frac{1}{37} a^{3} + \frac{17}{37} a^{2} + \frac{3}{37} a - \frac{5}{37}$, $\frac{1}{851} a^{12} - \frac{6}{851} a^{11} + \frac{4}{851} a^{10} - \frac{11}{851} a^{9} - \frac{9}{851} a^{8} + \frac{174}{851} a^{7} + \frac{128}{851} a^{6} + \frac{347}{851} a^{5} - \frac{403}{851} a^{4} - \frac{94}{851} a^{3} + \frac{87}{851} a^{2} + \frac{81}{851} a - \frac{315}{851}$, $\frac{1}{851} a^{13} - \frac{9}{851} a^{11} - \frac{10}{851} a^{10} - \frac{6}{851} a^{9} + \frac{5}{851} a^{8} + \frac{137}{851} a^{7} - \frac{265}{851} a^{6} - \frac{4}{37} a^{5} - \frac{327}{851} a^{4} - \frac{63}{851} a^{3} + \frac{327}{851} a^{2} + \frac{286}{851} a - \frac{4}{851}$, $\frac{1}{1242065428831643392368301878137841805321} a^{14} - \frac{7}{1242065428831643392368301878137841805321} a^{13} + \frac{243015366608839017864615182475964801}{1242065428831643392368301878137841805321} a^{12} - \frac{6538530043287148462725072174241205}{5569800129289880683265927704653999127} a^{11} - \frac{7508340539603494752061953618743273829}{1242065428831643392368301878137841805321} a^{10} - \frac{16231123967233860925693255147826746467}{1242065428831643392368301878137841805321} a^{9} + \frac{11464214568038262421504184447408365694}{1242065428831643392368301878137841805321} a^{8} + \frac{236906886821279182694748765887076876445}{1242065428831643392368301878137841805321} a^{7} + \frac{524621902774083620113401783779495191890}{1242065428831643392368301878137841805321} a^{6} - \frac{528291637178161145293091268950115475110}{1242065428831643392368301878137841805321} a^{5} - \frac{266011779634268350855682148770839847205}{1242065428831643392368301878137841805321} a^{4} - \frac{278436867559204901894942613638319803159}{1242065428831643392368301878137841805321} a^{3} + \frac{446804471618251967402232543963091666635}{1242065428831643392368301878137841805321} a^{2} + \frac{13665161600724197414109852902884370885}{54002844731810582276882690353819208927} a - \frac{148557401068422973424277069711711425084}{1242065428831643392368301878137841805321}$, $\frac{1}{55459463462761709112637047160732774449387971} a^{15} + \frac{22318}{55459463462761709112637047160732774449387971} a^{14} + \frac{20680413474961855873643562983378810167625}{55459463462761709112637047160732774449387971} a^{13} - \frac{31242612069212604337572814473903973137852}{55459463462761709112637047160732774449387971} a^{12} - \frac{725424671824987978482383298997723944849440}{55459463462761709112637047160732774449387971} a^{11} - \frac{710874982336715343165814394323873796195179}{55459463462761709112637047160732774449387971} a^{10} - \frac{704701601835757247731043511516808898497754}{55459463462761709112637047160732774449387971} a^{9} - \frac{632083726539362411389333428646554466055895}{55459463462761709112637047160732774449387971} a^{8} + \frac{17051077360469937620833742400550495611951349}{55459463462761709112637047160732774449387971} a^{7} - \frac{18911195986289926025053986474409782359345509}{55459463462761709112637047160732774449387971} a^{6} - \frac{21687781160221394380500507737343295942912702}{55459463462761709112637047160732774449387971} a^{5} - \frac{3393565871232364239145423118076711284550668}{55459463462761709112637047160732774449387971} a^{4} - \frac{558874069012346921513457247916760142509305}{1498904417912478624665866139479264174307783} a^{3} - \frac{24977184481346225740131146394994098139992551}{55459463462761709112637047160732774449387971} a^{2} - \frac{769894091724460492858946451247543308907928}{55459463462761709112637047160732774449387971} a + \frac{218676355625543531646210069728589958247263}{55459463462761709112637047160732774449387971}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 834152232017000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.532564273.1, 8.8.28344602131194663732673.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 73 | Data not computed | ||||||