Normalized defining polynomial
\( x^{16} - 3 x^{15} - 47 x^{14} + 80 x^{13} + 1033 x^{12} - 1001 x^{11} - 15701 x^{10} - 212 x^{9} + 181451 x^{8} + 353057 x^{7} - 570157 x^{6} - 3438310 x^{5} - 6547056 x^{4} - 7290744 x^{3} - 5355776 x^{2} - 2001824 x + 25408 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(800737337114777368288115578449=3^{8}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5} + \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{10} + \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{5}{16} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{32} a^{11} - \frac{1}{16} a^{9} - \frac{1}{32} a^{7} - \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{32} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{8} + \frac{1}{8} a^{5} - \frac{7}{32} a^{4} + \frac{1}{8} a^{3} + \frac{5}{16} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{9} - \frac{1}{8} a^{6} - \frac{7}{32} a^{5} - \frac{1}{8} a^{4} - \frac{3}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{512} a^{14} - \frac{1}{512} a^{13} - \frac{5}{512} a^{12} - \frac{3}{256} a^{11} - \frac{15}{512} a^{10} - \frac{15}{512} a^{9} + \frac{25}{512} a^{8} - \frac{11}{256} a^{7} + \frac{27}{512} a^{6} - \frac{113}{512} a^{5} - \frac{75}{512} a^{4} - \frac{1}{64} a^{3} - \frac{37}{128} a^{2} - \frac{1}{8} a - \frac{3}{32}$, $\frac{1}{44635089381439681583271184918086656} a^{15} - \frac{30342772117526971823030433036803}{44635089381439681583271184918086656} a^{14} - \frac{609774044836455951252937420098003}{44635089381439681583271184918086656} a^{13} - \frac{133906841042647932083819532126371}{11158772345359920395817796229521664} a^{12} + \frac{163888426340017357663704612327741}{44635089381439681583271184918086656} a^{11} - \frac{434701297276275690519437398212241}{44635089381439681583271184918086656} a^{10} - \frac{1726549455936593700528402805812281}{44635089381439681583271184918086656} a^{9} + \frac{127933237917977871673471870431849}{5579386172679960197908898114760832} a^{8} - \frac{5010629326284151488938425227056697}{44635089381439681583271184918086656} a^{7} + \frac{5110186705342774899025650750612665}{44635089381439681583271184918086656} a^{6} + \frac{2015206467629447592071292383992839}{44635089381439681583271184918086656} a^{5} + \frac{3772424015131089878596633911298687}{22317544690719840791635592459043328} a^{4} - \frac{1707165559075027177103349504290905}{11158772345359920395817796229521664} a^{3} - \frac{29257082856839705872234636047483}{5579386172679960197908898114760832} a^{2} - \frac{204972837096164565768206702956475}{2789693086339980098954449057380416} a - \frac{304302550689292957880851632407773}{1394846543169990049477224528690208}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9033509529.05 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 4.2.15987.1, 4.2.1167051.1, 8.4.99426586671873.1, 8.8.894839280046857.1, 8.4.1362008036601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 73 | Data not computed | ||||||