Properties

Label 16.8.800...449.1
Degree $16$
Signature $[8, 4]$
Discriminant $8.007\times 10^{29}$
Root discriminant \(73.96\)
Ramified primes $3,73$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^2 : C_8$ (as 16T24)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 - 47*x^14 + 80*x^13 + 1033*x^12 - 1001*x^11 - 15701*x^10 - 212*x^9 + 181451*x^8 + 353057*x^7 - 570157*x^6 - 3438310*x^5 - 6547056*x^4 - 7290744*x^3 - 5355776*x^2 - 2001824*x + 25408)
 
gp: K = bnfinit(y^16 - 3*y^15 - 47*y^14 + 80*y^13 + 1033*y^12 - 1001*y^11 - 15701*y^10 - 212*y^9 + 181451*y^8 + 353057*y^7 - 570157*y^6 - 3438310*y^5 - 6547056*y^4 - 7290744*y^3 - 5355776*y^2 - 2001824*y + 25408, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 3*x^15 - 47*x^14 + 80*x^13 + 1033*x^12 - 1001*x^11 - 15701*x^10 - 212*x^9 + 181451*x^8 + 353057*x^7 - 570157*x^6 - 3438310*x^5 - 6547056*x^4 - 7290744*x^3 - 5355776*x^2 - 2001824*x + 25408);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 3*x^15 - 47*x^14 + 80*x^13 + 1033*x^12 - 1001*x^11 - 15701*x^10 - 212*x^9 + 181451*x^8 + 353057*x^7 - 570157*x^6 - 3438310*x^5 - 6547056*x^4 - 7290744*x^3 - 5355776*x^2 - 2001824*x + 25408)
 

\( x^{16} - 3 x^{15} - 47 x^{14} + 80 x^{13} + 1033 x^{12} - 1001 x^{11} - 15701 x^{10} - 212 x^{9} + \cdots + 25408 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[8, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(800737337114777368288115578449\) \(\medspace = 3^{8}\cdot 73^{14}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(73.96\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}73^{7/8}\approx 73.95510022503493$
Ramified primes:   \(3\), \(73\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{8}-\frac{1}{8}a^{7}+\frac{1}{8}a^{5}+\frac{1}{8}a^{3}+\frac{3}{8}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{8}a^{9}-\frac{1}{8}a^{7}-\frac{1}{8}a^{6}+\frac{1}{8}a^{5}-\frac{1}{8}a^{4}+\frac{3}{8}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{16}a^{10}+\frac{1}{16}a^{6}-\frac{1}{8}a^{5}-\frac{1}{4}a^{4}-\frac{1}{8}a^{3}+\frac{5}{16}a^{2}+\frac{3}{8}a+\frac{1}{4}$, $\frac{1}{32}a^{11}-\frac{1}{16}a^{9}-\frac{1}{32}a^{7}-\frac{1}{16}a^{5}-\frac{1}{4}a^{4}+\frac{1}{32}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{32}a^{12}-\frac{1}{32}a^{8}+\frac{1}{8}a^{5}-\frac{7}{32}a^{4}+\frac{1}{8}a^{3}+\frac{5}{16}a^{2}-\frac{3}{8}a+\frac{1}{4}$, $\frac{1}{32}a^{13}-\frac{1}{32}a^{9}-\frac{1}{8}a^{6}-\frac{7}{32}a^{5}-\frac{1}{8}a^{4}-\frac{3}{16}a^{3}-\frac{1}{8}a^{2}-\frac{1}{4}a$, $\frac{1}{512}a^{14}-\frac{1}{512}a^{13}-\frac{5}{512}a^{12}-\frac{3}{256}a^{11}-\frac{15}{512}a^{10}-\frac{15}{512}a^{9}+\frac{25}{512}a^{8}-\frac{11}{256}a^{7}+\frac{27}{512}a^{6}-\frac{113}{512}a^{5}-\frac{75}{512}a^{4}-\frac{1}{64}a^{3}-\frac{37}{128}a^{2}-\frac{1}{8}a-\frac{3}{32}$, $\frac{1}{44\!\cdots\!56}a^{15}-\frac{30\!\cdots\!03}{44\!\cdots\!56}a^{14}-\frac{60\!\cdots\!03}{44\!\cdots\!56}a^{13}-\frac{13\!\cdots\!71}{11\!\cdots\!64}a^{12}+\frac{16\!\cdots\!41}{44\!\cdots\!56}a^{11}-\frac{43\!\cdots\!41}{44\!\cdots\!56}a^{10}-\frac{17\!\cdots\!81}{44\!\cdots\!56}a^{9}+\frac{12\!\cdots\!49}{55\!\cdots\!32}a^{8}-\frac{50\!\cdots\!97}{44\!\cdots\!56}a^{7}+\frac{51\!\cdots\!65}{44\!\cdots\!56}a^{6}+\frac{20\!\cdots\!39}{44\!\cdots\!56}a^{5}+\frac{37\!\cdots\!87}{22\!\cdots\!28}a^{4}-\frac{17\!\cdots\!05}{11\!\cdots\!64}a^{3}-\frac{29\!\cdots\!83}{55\!\cdots\!32}a^{2}-\frac{20\!\cdots\!75}{27\!\cdots\!16}a-\frac{30\!\cdots\!73}{13\!\cdots\!08}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{17\!\cdots\!33}{20\!\cdots\!72}a^{15}-\frac{12\!\cdots\!29}{20\!\cdots\!72}a^{14}-\frac{44\!\cdots\!41}{20\!\cdots\!72}a^{13}+\frac{19\!\cdots\!97}{10\!\cdots\!36}a^{12}+\frac{62\!\cdots\!93}{20\!\cdots\!72}a^{11}-\frac{62\!\cdots\!11}{20\!\cdots\!72}a^{10}-\frac{84\!\cdots\!95}{20\!\cdots\!72}a^{9}+\frac{32\!\cdots\!17}{10\!\cdots\!36}a^{8}+\frac{14\!\cdots\!87}{20\!\cdots\!72}a^{7}-\frac{24\!\cdots\!09}{20\!\cdots\!72}a^{6}-\frac{11\!\cdots\!11}{20\!\cdots\!72}a^{5}-\frac{36\!\cdots\!67}{62\!\cdots\!96}a^{4}-\frac{40\!\cdots\!29}{50\!\cdots\!68}a^{3}+\frac{40\!\cdots\!27}{62\!\cdots\!96}a^{2}+\frac{70\!\cdots\!81}{12\!\cdots\!92}a-\frac{31\!\cdots\!39}{15\!\cdots\!24}$, $\frac{14\!\cdots\!33}{22\!\cdots\!28}a^{15}-\frac{64\!\cdots\!61}{27\!\cdots\!16}a^{14}-\frac{35\!\cdots\!91}{11\!\cdots\!64}a^{13}+\frac{16\!\cdots\!89}{22\!\cdots\!28}a^{12}+\frac{15\!\cdots\!79}{22\!\cdots\!28}a^{11}-\frac{13\!\cdots\!11}{11\!\cdots\!64}a^{10}-\frac{11\!\cdots\!47}{11\!\cdots\!64}a^{9}+\frac{17\!\cdots\!15}{22\!\cdots\!28}a^{8}+\frac{28\!\cdots\!85}{22\!\cdots\!28}a^{7}+\frac{16\!\cdots\!25}{11\!\cdots\!64}a^{6}-\frac{33\!\cdots\!37}{55\!\cdots\!32}a^{5}-\frac{45\!\cdots\!47}{22\!\cdots\!28}a^{4}-\frac{14\!\cdots\!47}{55\!\cdots\!32}a^{3}-\frac{10\!\cdots\!37}{55\!\cdots\!32}a^{2}-\frac{21\!\cdots\!99}{13\!\cdots\!08}a-\frac{10\!\cdots\!19}{13\!\cdots\!08}$, $\frac{58\!\cdots\!45}{22\!\cdots\!28}a^{15}-\frac{11\!\cdots\!89}{55\!\cdots\!32}a^{14}-\frac{59\!\cdots\!93}{11\!\cdots\!64}a^{13}+\frac{14\!\cdots\!01}{22\!\cdots\!28}a^{12}+\frac{13\!\cdots\!63}{22\!\cdots\!28}a^{11}-\frac{11\!\cdots\!25}{11\!\cdots\!64}a^{10}-\frac{89\!\cdots\!81}{11\!\cdots\!64}a^{9}+\frac{25\!\cdots\!39}{22\!\cdots\!28}a^{8}+\frac{39\!\cdots\!73}{22\!\cdots\!28}a^{7}-\frac{69\!\cdots\!93}{11\!\cdots\!64}a^{6}-\frac{53\!\cdots\!07}{27\!\cdots\!16}a^{5}-\frac{10\!\cdots\!19}{22\!\cdots\!28}a^{4}+\frac{23\!\cdots\!01}{55\!\cdots\!32}a^{3}+\frac{40\!\cdots\!95}{55\!\cdots\!32}a^{2}+\frac{10\!\cdots\!65}{13\!\cdots\!08}a+\frac{53\!\cdots\!41}{13\!\cdots\!08}$, $\frac{30\!\cdots\!89}{11\!\cdots\!64}a^{15}-\frac{15\!\cdots\!27}{11\!\cdots\!64}a^{14}-\frac{10\!\cdots\!19}{11\!\cdots\!64}a^{13}+\frac{11\!\cdots\!41}{27\!\cdots\!16}a^{12}+\frac{20\!\cdots\!65}{11\!\cdots\!64}a^{11}-\frac{75\!\cdots\!57}{11\!\cdots\!64}a^{10}-\frac{31\!\cdots\!69}{11\!\cdots\!64}a^{9}+\frac{82\!\cdots\!93}{13\!\cdots\!08}a^{8}+\frac{40\!\cdots\!91}{11\!\cdots\!64}a^{7}+\frac{20\!\cdots\!65}{11\!\cdots\!64}a^{6}-\frac{21\!\cdots\!29}{11\!\cdots\!64}a^{5}-\frac{29\!\cdots\!33}{55\!\cdots\!32}a^{4}-\frac{19\!\cdots\!07}{27\!\cdots\!16}a^{3}-\frac{82\!\cdots\!03}{13\!\cdots\!08}a^{2}-\frac{19\!\cdots\!23}{69\!\cdots\!04}a-\frac{15\!\cdots\!91}{34\!\cdots\!52}$, $\frac{61\!\cdots\!07}{44\!\cdots\!56}a^{15}-\frac{25\!\cdots\!57}{44\!\cdots\!56}a^{14}-\frac{25\!\cdots\!73}{44\!\cdots\!56}a^{13}+\frac{19\!\cdots\!41}{11\!\cdots\!64}a^{12}+\frac{53\!\cdots\!39}{44\!\cdots\!56}a^{11}-\frac{11\!\cdots\!87}{44\!\cdots\!56}a^{10}-\frac{80\!\cdots\!71}{44\!\cdots\!56}a^{9}+\frac{24\!\cdots\!73}{13\!\cdots\!08}a^{8}+\frac{98\!\cdots\!77}{44\!\cdots\!56}a^{7}+\frac{11\!\cdots\!87}{44\!\cdots\!56}a^{6}-\frac{41\!\cdots\!79}{44\!\cdots\!56}a^{5}-\frac{80\!\cdots\!95}{22\!\cdots\!28}a^{4}-\frac{64\!\cdots\!19}{11\!\cdots\!64}a^{3}-\frac{32\!\cdots\!57}{55\!\cdots\!32}a^{2}-\frac{10\!\cdots\!81}{27\!\cdots\!16}a-\frac{13\!\cdots\!15}{13\!\cdots\!08}$, $\frac{61\!\cdots\!19}{22\!\cdots\!28}a^{15}+\frac{60\!\cdots\!35}{11\!\cdots\!64}a^{14}-\frac{12\!\cdots\!19}{69\!\cdots\!04}a^{13}-\frac{93\!\cdots\!95}{22\!\cdots\!28}a^{12}+\frac{10\!\cdots\!29}{22\!\cdots\!28}a^{11}+\frac{63\!\cdots\!29}{55\!\cdots\!32}a^{10}-\frac{41\!\cdots\!61}{55\!\cdots\!32}a^{9}-\frac{49\!\cdots\!57}{22\!\cdots\!28}a^{8}+\frac{17\!\cdots\!67}{22\!\cdots\!28}a^{7}+\frac{10\!\cdots\!03}{27\!\cdots\!16}a^{6}+\frac{29\!\cdots\!51}{11\!\cdots\!64}a^{5}-\frac{53\!\cdots\!27}{22\!\cdots\!28}a^{4}-\frac{30\!\cdots\!73}{55\!\cdots\!32}a^{3}-\frac{29\!\cdots\!37}{55\!\cdots\!32}a^{2}-\frac{26\!\cdots\!61}{13\!\cdots\!08}a+\frac{37\!\cdots\!13}{13\!\cdots\!08}$, $\frac{22\!\cdots\!83}{22\!\cdots\!28}a^{15}-\frac{12\!\cdots\!71}{22\!\cdots\!28}a^{14}-\frac{68\!\cdots\!43}{22\!\cdots\!28}a^{13}+\frac{17\!\cdots\!13}{11\!\cdots\!64}a^{12}+\frac{13\!\cdots\!23}{22\!\cdots\!28}a^{11}-\frac{54\!\cdots\!85}{22\!\cdots\!28}a^{10}-\frac{19\!\cdots\!61}{22\!\cdots\!28}a^{9}+\frac{23\!\cdots\!45}{11\!\cdots\!64}a^{8}+\frac{26\!\cdots\!29}{22\!\cdots\!28}a^{7}+\frac{13\!\cdots\!85}{22\!\cdots\!28}a^{6}-\frac{13\!\cdots\!97}{22\!\cdots\!28}a^{5}-\frac{10\!\cdots\!27}{55\!\cdots\!32}a^{4}-\frac{14\!\cdots\!71}{55\!\cdots\!32}a^{3}-\frac{34\!\cdots\!09}{13\!\cdots\!08}a^{2}-\frac{19\!\cdots\!09}{13\!\cdots\!08}a-\frac{12\!\cdots\!97}{34\!\cdots\!52}$, $\frac{80\!\cdots\!65}{44\!\cdots\!56}a^{15}-\frac{47\!\cdots\!17}{44\!\cdots\!56}a^{14}-\frac{24\!\cdots\!69}{44\!\cdots\!56}a^{13}+\frac{71\!\cdots\!85}{22\!\cdots\!28}a^{12}+\frac{45\!\cdots\!89}{44\!\cdots\!56}a^{11}-\frac{22\!\cdots\!19}{44\!\cdots\!56}a^{10}-\frac{69\!\cdots\!19}{44\!\cdots\!56}a^{9}+\frac{10\!\cdots\!45}{22\!\cdots\!28}a^{8}+\frac{97\!\cdots\!11}{44\!\cdots\!56}a^{7}-\frac{12\!\cdots\!45}{44\!\cdots\!56}a^{6}-\frac{61\!\cdots\!75}{44\!\cdots\!56}a^{5}-\frac{18\!\cdots\!01}{69\!\cdots\!04}a^{4}-\frac{22\!\cdots\!85}{11\!\cdots\!64}a^{3}-\frac{10\!\cdots\!33}{13\!\cdots\!08}a^{2}+\frac{25\!\cdots\!53}{27\!\cdots\!16}a+\frac{40\!\cdots\!17}{34\!\cdots\!52}$, $\frac{31\!\cdots\!53}{55\!\cdots\!32}a^{15}-\frac{73\!\cdots\!83}{22\!\cdots\!28}a^{14}-\frac{40\!\cdots\!73}{22\!\cdots\!28}a^{13}+\frac{22\!\cdots\!43}{22\!\cdots\!28}a^{12}+\frac{37\!\cdots\!47}{11\!\cdots\!64}a^{11}-\frac{35\!\cdots\!03}{22\!\cdots\!28}a^{10}-\frac{11\!\cdots\!11}{22\!\cdots\!28}a^{9}+\frac{33\!\cdots\!85}{22\!\cdots\!28}a^{8}+\frac{75\!\cdots\!87}{11\!\cdots\!64}a^{7}-\frac{37\!\cdots\!45}{22\!\cdots\!28}a^{6}-\frac{88\!\cdots\!33}{22\!\cdots\!28}a^{5}-\frac{18\!\cdots\!43}{22\!\cdots\!28}a^{4}-\frac{25\!\cdots\!19}{27\!\cdots\!16}a^{3}-\frac{48\!\cdots\!37}{55\!\cdots\!32}a^{2}-\frac{19\!\cdots\!13}{34\!\cdots\!52}a-\frac{72\!\cdots\!95}{13\!\cdots\!08}$, $\frac{25\!\cdots\!39}{27\!\cdots\!16}a^{15}-\frac{50\!\cdots\!81}{11\!\cdots\!64}a^{14}-\frac{38\!\cdots\!51}{11\!\cdots\!64}a^{13}+\frac{15\!\cdots\!21}{11\!\cdots\!64}a^{12}+\frac{37\!\cdots\!77}{55\!\cdots\!32}a^{11}-\frac{25\!\cdots\!01}{11\!\cdots\!64}a^{10}-\frac{11\!\cdots\!49}{11\!\cdots\!64}a^{9}+\frac{22\!\cdots\!15}{11\!\cdots\!64}a^{8}+\frac{72\!\cdots\!05}{55\!\cdots\!32}a^{7}+\frac{77\!\cdots\!57}{11\!\cdots\!64}a^{6}-\frac{75\!\cdots\!95}{11\!\cdots\!64}a^{5}-\frac{20\!\cdots\!85}{11\!\cdots\!64}a^{4}-\frac{16\!\cdots\!27}{69\!\cdots\!04}a^{3}-\frac{52\!\cdots\!47}{27\!\cdots\!16}a^{2}-\frac{32\!\cdots\!52}{43\!\cdots\!69}a+\frac{10\!\cdots\!11}{69\!\cdots\!04}$, $\frac{51\!\cdots\!93}{22\!\cdots\!28}a^{15}-\frac{21\!\cdots\!83}{22\!\cdots\!28}a^{14}-\frac{22\!\cdots\!31}{22\!\cdots\!28}a^{13}+\frac{17\!\cdots\!15}{55\!\cdots\!32}a^{12}+\frac{45\!\cdots\!17}{22\!\cdots\!28}a^{11}-\frac{11\!\cdots\!01}{22\!\cdots\!28}a^{10}-\frac{68\!\cdots\!97}{22\!\cdots\!28}a^{9}+\frac{55\!\cdots\!79}{13\!\cdots\!08}a^{8}+\frac{84\!\cdots\!03}{22\!\cdots\!28}a^{7}+\frac{74\!\cdots\!25}{22\!\cdots\!28}a^{6}-\frac{39\!\cdots\!81}{22\!\cdots\!28}a^{5}-\frac{63\!\cdots\!37}{11\!\cdots\!64}a^{4}-\frac{43\!\cdots\!37}{55\!\cdots\!32}a^{3}-\frac{18\!\cdots\!51}{27\!\cdots\!16}a^{2}-\frac{48\!\cdots\!99}{13\!\cdots\!08}a+\frac{30\!\cdots\!99}{69\!\cdots\!04}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 9033509529.05 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 9033509529.05 \cdot 1}{2\cdot\sqrt{800737337114777368288115578449}}\cr\approx \mathstrut & 2.01391395084 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 - 47*x^14 + 80*x^13 + 1033*x^12 - 1001*x^11 - 15701*x^10 - 212*x^9 + 181451*x^8 + 353057*x^7 - 570157*x^6 - 3438310*x^5 - 6547056*x^4 - 7290744*x^3 - 5355776*x^2 - 2001824*x + 25408)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 3*x^15 - 47*x^14 + 80*x^13 + 1033*x^12 - 1001*x^11 - 15701*x^10 - 212*x^9 + 181451*x^8 + 353057*x^7 - 570157*x^6 - 3438310*x^5 - 6547056*x^4 - 7290744*x^3 - 5355776*x^2 - 2001824*x + 25408, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 3*x^15 - 47*x^14 + 80*x^13 + 1033*x^12 - 1001*x^11 - 15701*x^10 - 212*x^9 + 181451*x^8 + 353057*x^7 - 570157*x^6 - 3438310*x^5 - 6547056*x^4 - 7290744*x^3 - 5355776*x^2 - 2001824*x + 25408);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 3*x^15 - 47*x^14 + 80*x^13 + 1033*x^12 - 1001*x^11 - 15701*x^10 - 212*x^9 + 181451*x^8 + 353057*x^7 - 570157*x^6 - 3438310*x^5 - 6547056*x^4 - 7290744*x^3 - 5355776*x^2 - 2001824*x + 25408);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2:C_8$ (as 16T24):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32
The 20 conjugacy class representatives for $C_2^2 : C_8$
Character table for $C_2^2 : C_8$

Intermediate fields

\(\Q(\sqrt{73}) \), 4.4.389017.1, 4.2.15987.1, 4.2.1167051.1, 8.4.99426586671873.1, 8.8.894839280046857.1, 8.4.1362008036601.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 16 sibling: 16.0.9885646137219473682569328129.1
Minimal sibling: 16.0.9885646137219473682569328129.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.2.0.1}{2} }^{8}$ R ${\href{/padicField/5.8.0.1}{8} }^{2}$ ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.8.0.1}{8} }^{2}$ ${\href{/padicField/13.8.0.1}{8} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{8}$ ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{8}$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ ${\href{/padicField/47.8.0.1}{8} }^{2}$ ${\href{/padicField/53.8.0.1}{8} }^{2}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.4.2.2$x^{4} - 6 x^{3} + 12 x^{2} + 36 x + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 6 x^{3} + 12 x^{2} + 36 x + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(73\) Copy content Toggle raw display 73.16.14.1$x^{16} + 560 x^{15} + 137240 x^{14} + 19227600 x^{13} + 1684816700 x^{12} + 94599694000 x^{11} + 3327837457000 x^{10} + 67300032450000 x^{9} + 609674268043896 x^{8} + 336500162290880 x^{7} + 83195946420160 x^{6} + 11826359641600 x^{5} + 1175201013000 x^{4} + 6895769020000 x^{3} + 239006660174000 x^{2} + 4775207729180000 x + 41740387870087204$$8$$2$$14$$C_8\times C_2$$[\ ]_{8}^{2}$