Normalized defining polynomial
\( x^{16} - 560 x^{12} + 1344 x^{10} + 69356 x^{8} - 37632 x^{6} - 2787904 x^{4} - 6190464 x^{2} + 1552516 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(800704476782743824084831595134976=2^{70}\cdot 7^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{168} a^{8} - \frac{1}{2} a^{6} - \frac{1}{6} a^{4} + \frac{1}{12}$, $\frac{1}{168} a^{9} - \frac{1}{2} a^{7} - \frac{1}{6} a^{5} + \frac{1}{12} a$, $\frac{1}{168} a^{10} - \frac{1}{6} a^{6} + \frac{1}{12} a^{2}$, $\frac{1}{168} a^{11} - \frac{1}{6} a^{7} + \frac{1}{12} a^{3}$, $\frac{1}{3864} a^{12} - \frac{1}{1288} a^{10} + \frac{1}{644} a^{8} - \frac{1}{2} a^{6} + \frac{113}{276} a^{4} + \frac{3}{92} a^{2} - \frac{31}{138}$, $\frac{1}{3864} a^{13} - \frac{1}{1288} a^{11} + \frac{1}{644} a^{9} - \frac{1}{2} a^{7} + \frac{113}{276} a^{5} + \frac{3}{92} a^{3} - \frac{31}{138} a$, $\frac{1}{320438430956112} a^{14} - \frac{1325590271}{26703202579676} a^{12} - \frac{54374685863}{40054803869514} a^{10} - \frac{230514607417}{160219215478056} a^{8} - \frac{1}{2} a^{7} - \frac{5433797917259}{22888459354008} a^{6} + \frac{1794263854147}{5722114838502} a^{4} - \frac{586437187909}{1907371612834} a^{2} - \frac{4994328248341}{11444229677004}$, $\frac{1}{28519020355093968} a^{15} + \frac{4163260921}{53406405159352} a^{13} + \frac{37578328829}{77497337921451} a^{11} + \frac{707387271182}{594146257397791} a^{9} - \frac{176017873277925}{679024294168904} a^{7} + \frac{112666842986143}{339512147084452} a^{5} - \frac{157417421011093}{509268220626678} a^{3} + \frac{16608479777191}{84878036771113} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93406158642.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:Q_8.C_2^3$ (as 16T520):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_4:Q_8.C_2^3$ |
| Character table for $C_4:Q_8.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.100352.1, 8.8.31581162962944.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.8.7.1 | $x^{8} + 14$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ |
| 7.8.7.1 | $x^{8} + 14$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ | |