Normalized defining polynomial
\( x^{16} - 3 x^{15} - 15 x^{14} + 87 x^{13} - 11 x^{12} - 994 x^{11} + 99 x^{10} + 4303 x^{9} + 3872 x^{8} - 8624 x^{7} - 8914 x^{6} + 19675 x^{5} - 27 x^{4} - 26064 x^{3} + 6272 x^{2} + 6656 x + 4096 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7990928942138374856180209=17^{14}\cdot 83^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{104} a^{13} + \frac{9}{104} a^{12} + \frac{25}{104} a^{11} - \frac{5}{104} a^{10} + \frac{1}{104} a^{9} - \frac{15}{52} a^{8} + \frac{27}{104} a^{7} - \frac{29}{104} a^{6} + \frac{7}{26} a^{5} - \frac{3}{26} a^{4} + \frac{1}{4} a^{3} - \frac{25}{104} a^{2} + \frac{49}{104} a + \frac{5}{13}$, $\frac{1}{832} a^{14} - \frac{3}{832} a^{13} + \frac{177}{832} a^{12} - \frac{201}{832} a^{11} - \frac{43}{832} a^{10} + \frac{31}{416} a^{9} - \frac{29}{832} a^{8} - \frac{145}{832} a^{7} - \frac{11}{26} a^{6} + \frac{1}{52} a^{5} - \frac{201}{416} a^{4} - \frac{389}{832} a^{3} + \frac{37}{832} a^{2} - \frac{5}{52} a - \frac{1}{13}$, $\frac{1}{25750418986993453095251712174592} a^{15} - \frac{7124630221647389090817395619}{25750418986993453095251712174592} a^{14} - \frac{15757732277671502239899256303}{25750418986993453095251712174592} a^{13} - \frac{2347648681228927886954267205897}{25750418986993453095251712174592} a^{12} - \frac{5667192818173056063755130561067}{25750418986993453095251712174592} a^{11} + \frac{1164989226694117761188725079775}{12875209493496726547625856087296} a^{10} + \frac{5360150922320084714007321132771}{25750418986993453095251712174592} a^{9} + \frac{132320243690944411693124061797}{384334611746170941720174808576} a^{8} - \frac{19924727722357145171309651483}{201175148335886352306654001364} a^{7} - \frac{444931777539314183231130798943}{1609401186687090818453232010912} a^{6} - \frac{1147395060099151540075895467625}{12875209493496726547625856087296} a^{5} + \frac{11213174105948435988089278351387}{25750418986993453095251712174592} a^{4} - \frac{11784594343740405158478160745595}{25750418986993453095251712174592} a^{3} - \frac{224242593563381046139414705811}{1609401186687090818453232010912} a^{2} + \frac{39421336945907074229273202051}{402350296671772704613308002728} a + \frac{7156089560910768471089789637}{50293787083971588076663500341}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2930814.43896 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 4.2.23987.1, 4.2.407779.1, 8.4.2826823118297.1, \(\Q(\zeta_{17})^+\), 8.4.166283712841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $83$ | 83.4.0.1 | $x^{4} - x + 22$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 83.4.0.1 | $x^{4} - x + 22$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 83.8.4.1 | $x^{8} + 303116 x^{4} - 571787 x^{2} + 22969827364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |