Normalized defining polynomial
\( x^{16} - x^{15} - 10 x^{14} + 14 x^{13} + 42 x^{12} - 76 x^{11} - 117 x^{10} + 254 x^{9} + 238 x^{8} - 662 x^{7} - 198 x^{6} + 1114 x^{5} - 222 x^{4} - 935 x^{3} + 470 x^{2} + 280 x - 191 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(798017618443531640625=3^{16}\cdot 5^{8}\cdot 83^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{15} a^{11} - \frac{2}{15} a^{10} + \frac{2}{5} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{15} a^{6} - \frac{1}{5} a^{5} - \frac{4}{15} a^{4} - \frac{1}{3} a^{3} - \frac{2}{15} a^{2} - \frac{2}{5} a + \frac{7}{15}$, $\frac{1}{15} a^{12} + \frac{2}{15} a^{10} + \frac{7}{15} a^{9} - \frac{1}{3} a^{8} - \frac{2}{5} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{2}{15} a^{4} + \frac{1}{5} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{15}$, $\frac{1}{15} a^{13} + \frac{1}{15} a^{10} - \frac{7}{15} a^{9} - \frac{1}{15} a^{8} + \frac{2}{15} a^{6} - \frac{2}{15} a^{5} + \frac{1}{15} a^{4} + \frac{4}{15} a^{2} + \frac{2}{5} a - \frac{4}{15}$, $\frac{1}{225} a^{14} + \frac{1}{75} a^{13} + \frac{1}{75} a^{12} - \frac{1}{225} a^{11} + \frac{26}{225} a^{10} + \frac{14}{75} a^{9} - \frac{13}{225} a^{8} - \frac{11}{225} a^{7} - \frac{14}{225} a^{6} + \frac{37}{75} a^{5} + \frac{7}{225} a^{4} + \frac{68}{225} a^{3} - \frac{7}{25} a^{2} + \frac{37}{75} a - \frac{49}{225}$, $\frac{1}{316125} a^{15} + \frac{581}{316125} a^{14} - \frac{677}{35125} a^{13} - \frac{5512}{316125} a^{12} - \frac{1514}{105375} a^{11} - \frac{424}{63225} a^{10} - \frac{46732}{316125} a^{9} + \frac{2011}{63225} a^{8} - \frac{49034}{105375} a^{7} + \frac{27749}{316125} a^{6} - \frac{21226}{63225} a^{5} + \frac{109654}{316125} a^{4} - \frac{66944}{316125} a^{3} - \frac{45056}{105375} a^{2} + \frac{132119}{316125} a + \frac{75163}{316125}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30064.8269648 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3:S_4.C_2$ (as 16T763):
| A solvable group of order 384 |
| The 26 conjugacy class representatives for $C_2^3:S_4.C_2$ |
| Character table for $C_2^3:S_4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.56025.1, 8.8.3138800625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.12.14.3 | $x^{12} - 12 x^{11} + 3 x^{10} - 9 x^{7} - 6 x^{6} - 9 x^{3} + 9 x^{2} - 9$ | $6$ | $2$ | $14$ | $S_3 \times C_4$ | $[3/2]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $83$ | 83.4.0.1 | $x^{4} - x + 22$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 83.4.0.1 | $x^{4} - x + 22$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 83.8.4.1 | $x^{8} + 303116 x^{4} - 571787 x^{2} + 22969827364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |