Normalized defining polynomial
\( x^{16} + 52 x^{14} - 324 x^{13} - 27589 x^{12} + 34408 x^{11} - 1384598 x^{10} + 7185744 x^{9} + 194964715 x^{8} - 205481584 x^{7} + 7975385568 x^{6} - 8528696844 x^{5} - 438868218257 x^{4} - 570322900656 x^{3} - 13351517441880 x^{2} - 26945103359324 x + 14401865752759 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7936109291110060736213155840000000000=2^{32}\cdot 5^{10}\cdot 29^{6}\cdot 751^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $202.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 751$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{495} a^{14} + \frac{29}{495} a^{13} - \frac{116}{495} a^{12} + \frac{24}{55} a^{11} + \frac{184}{495} a^{10} - \frac{38}{165} a^{8} - \frac{4}{165} a^{7} - \frac{107}{495} a^{6} - \frac{59}{495} a^{5} - \frac{31}{99} a^{4} - \frac{203}{495} a^{3} - \frac{34}{495} a^{2} - \frac{3}{11} a - \frac{224}{495}$, $\frac{1}{13518786669053693927740442866372768926042538037260185825890174174348403545936407603519928340438645} a^{15} - \frac{7415809690084533619377686063370626727984698521547409696488730723189834337496718743209730985503}{13518786669053693927740442866372768926042538037260185825890174174348403545936407603519928340438645} a^{14} - \frac{440994767412444679273569768141880387947267297191509945183553775780782023874155423140800746272634}{13518786669053693927740442866372768926042538037260185825890174174348403545936407603519928340438645} a^{13} - \frac{1376308956887569095558717090620119130732671314709348816528835700057308581964960837601961830066682}{13518786669053693927740442866372768926042538037260185825890174174348403545936407603519928340438645} a^{12} - \frac{197717342865960352253592072668328709386227815590437103627795399148489484563529831505626935618094}{1931255238436241989677206123767538418006076862465740832270024882049771935133772514788561191491235} a^{11} - \frac{6723393362754846526745011785214134448578531349536219011983166582025666153891172691790230377831978}{13518786669053693927740442866372768926042538037260185825890174174348403545936407603519928340438645} a^{10} - \frac{282853530172794843209302478345418384020954477410872219453560237325714966130368668324797684366469}{643751746145413996559068707922512806002025620821913610756674960683257311711257504929520397163745} a^{9} - \frac{74998654924751291112380350338156833565014417113226317394417751286831777903562892015511284235823}{4506262223017897975913480955457589642014179345753395275296724724782801181978802534506642780146215} a^{8} - \frac{5043692880067634936858661173109114023699407715430612950951448368875784049254314366834256289787253}{13518786669053693927740442866372768926042538037260185825890174174348403545936407603519928340438645} a^{7} + \frac{287450049265662179816596790682233224961798623516292406480266797565794296352222115967394138841539}{901252444603579595182696191091517928402835869150679055059344944956560236395760506901328556029243} a^{6} + \frac{1331000175003781529200240651320859094582004913788700785815791208233153789277390751056825534692121}{4506262223017897975913480955457589642014179345753395275296724724782801181978802534506642780146215} a^{5} + \frac{3368674695145116033070169280024620905056920013026166024563913559814363973259160222014327965526}{45517800232504019958722029853106966080951306522761568437340653785684860424028308429360028082285} a^{4} - \frac{5428054871237226739660229905944170268977410613270474524765930837105048454710087543060990898654168}{13518786669053693927740442866372768926042538037260185825890174174348403545936407603519928340438645} a^{3} - \frac{5942077286076576293539525822212550151672340828192688679076068723265723668926443930334209593981}{1931255238436241989677206123767538418006076862465740832270024882049771935133772514788561191491235} a^{2} + \frac{610501821349313868130334020240157894962802899995997678409393729306169241822901233480714650075341}{1228980606277608538885494806033888084185685276114562347808197652213491231448764327592720758221695} a + \frac{2748174625901303465499562837351571268255067476186897860950812421580204953702519159631756685148643}{13518786669053693927740442866372768926042538037260185825890174174348403545936407603519928340438645}$
Class group and class number
$C_{14}$, which has order $14$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 262571450736 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T456):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.4.46400.1, 4.4.725.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.2152960000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 751 | Data not computed | ||||||