Normalized defining polynomial
\( x^{16} - 8 x^{15} + 22 x^{14} + 69 x^{13} - 1083 x^{12} + 1666 x^{11} + 2984 x^{10} + 50655 x^{9} - 100815 x^{8} - 823340 x^{7} + 2232798 x^{6} + 1240595 x^{5} - 9310725 x^{4} + 10100722 x^{3} - 2301660 x^{2} + 217481 x + 99662 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(789464195714758583406110606440000=2^{6}\cdot 5^{4}\cdot 17^{8}\cdot 19^{2}\cdot 97^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 19, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{8} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{16} a^{4} + \frac{1}{8} a^{3} - \frac{7}{16} a^{2} + \frac{1}{16} a - \frac{3}{8}$, $\frac{1}{32} a^{10} + \frac{1}{32} a^{8} - \frac{3}{32} a^{7} - \frac{3}{32} a^{6} + \frac{1}{32} a^{5} + \frac{5}{32} a^{4} - \frac{5}{32} a^{3} + \frac{5}{16} a^{2} + \frac{7}{32} a - \frac{7}{16}$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} + \frac{1}{64} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{13}{32} a^{4} + \frac{23}{64} a^{3} + \frac{5}{64} a^{2} - \frac{13}{64} a + \frac{15}{32}$, $\frac{1}{128} a^{12} - \frac{3}{128} a^{9} + \frac{1}{32} a^{8} + \frac{1}{32} a^{7} + \frac{1}{16} a^{6} + \frac{1}{64} a^{5} + \frac{45}{128} a^{4} + \frac{3}{32} a^{3} + \frac{5}{16} a^{2} - \frac{15}{128} a + \frac{15}{64}$, $\frac{1}{512} a^{13} - \frac{1}{512} a^{12} - \frac{1}{128} a^{11} - \frac{7}{512} a^{10} + \frac{3}{512} a^{9} - \frac{3}{64} a^{8} - \frac{9}{128} a^{7} + \frac{1}{256} a^{6} - \frac{77}{512} a^{5} - \frac{129}{512} a^{4} + \frac{17}{64} a^{3} + \frac{69}{512} a^{2} + \frac{105}{512} a - \frac{19}{256}$, $\frac{1}{6144} a^{14} - \frac{1}{3072} a^{13} + \frac{7}{2048} a^{12} - \frac{19}{6144} a^{11} - \frac{1}{1024} a^{10} - \frac{115}{6144} a^{9} - \frac{67}{1536} a^{8} - \frac{205}{3072} a^{7} - \frac{239}{6144} a^{6} + \frac{77}{512} a^{5} - \frac{1087}{6144} a^{4} - \frac{2035}{6144} a^{3} - \frac{683}{1536} a^{2} - \frac{1159}{6144} a - \frac{533}{3072}$, $\frac{1}{5895401477859932624122651956109369344} a^{15} - \frac{10261682967127561981365980880173}{1965133825953310874707550652036456448} a^{14} - \frac{531737591367669839592403525534993}{5895401477859932624122651956109369344} a^{13} + \frac{1282827584026230386790084301132397}{1473850369464983156030662989027342336} a^{12} + \frac{40416137172780044411473227289220761}{5895401477859932624122651956109369344} a^{11} - \frac{9552317992832876595461266606501381}{5895401477859932624122651956109369344} a^{10} + \frac{17306834932848677722786570724601825}{1965133825953310874707550652036456448} a^{9} + \frac{68430348421375682057784592223965585}{2947700738929966312061325978054684672} a^{8} + \frac{225724622195688315477930382802838001}{1965133825953310874707550652036456448} a^{7} + \frac{472827886542757520675143717774656359}{5895401477859932624122651956109369344} a^{6} - \frac{1045491461014424330039270563820177371}{5895401477859932624122651956109369344} a^{5} - \frac{26135687937108003829912063924416763}{245641728244163859338443831504557056} a^{4} + \frac{2568368288086625855298477804496013843}{5895401477859932624122651956109369344} a^{3} - \frac{699645812994521796121155718070557979}{5895401477859932624122651956109369344} a^{2} - \frac{184116443877553100243632774158878653}{1965133825953310874707550652036456448} a - \frac{1326217643960522018154450096913548295}{2947700738929966312061325978054684672}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 466874712013 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 55 conjugacy class representatives for t16n1123 are not computed |
| Character table for t16n1123 is not computed |
Intermediate fields
| \(\Q(\sqrt{1649}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{97}) \), \(\Q(\sqrt{17}, \sqrt{97})\), 8.8.184851351960025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97 | Data not computed | ||||||