Normalized defining polynomial
\( x^{16} - 16 x^{14} - 32 x^{13} + 40 x^{12} + 272 x^{11} + 432 x^{10} + 176 x^{9} - 784 x^{8} - 1696 x^{7} - 2176 x^{6} - 1504 x^{5} + 1328 x^{4} + 2816 x^{3} + 4608 x^{2} - 128 x - 248 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7772780323046872376672256=2^{58}\cdot 3^{4}\cdot 577^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{6} a^{10} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{84} a^{14} - \frac{1}{28} a^{13} + \frac{1}{84} a^{12} + \frac{1}{21} a^{11} - \frac{1}{14} a^{10} - \frac{1}{6} a^{9} + \frac{1}{14} a^{8} + \frac{1}{21} a^{7} + \frac{2}{21} a^{6} - \frac{2}{21} a^{5} + \frac{1}{7} a^{4} - \frac{2}{21} a^{3} + \frac{5}{21} a^{2} + \frac{1}{21} a - \frac{8}{21}$, $\frac{1}{9446949993409711738284} a^{15} - \frac{2011526246866324024}{2361737498352427934571} a^{14} + \frac{1942336832240562010}{76185080592013804341} a^{13} - \frac{1690556054161397771}{1574491665568285289714} a^{12} - \frac{267210478992630063563}{4723474996704855869142} a^{11} - \frac{986909254002781966993}{4723474996704855869142} a^{10} + \frac{485479983981733090670}{2361737498352427934571} a^{9} - \frac{14492381624225550985}{4723474996704855869142} a^{8} + \frac{299475385292858926199}{4723474996704855869142} a^{7} - \frac{49549963802252672398}{337391071193203990653} a^{6} - \frac{1098740904891797217595}{2361737498352427934571} a^{5} + \frac{191668158272624058670}{2361737498352427934571} a^{4} + \frac{1367274605880892894}{2361737498352427934571} a^{3} + \frac{825045968251996677899}{2361737498352427934571} a^{2} + \frac{35421269062347286070}{112463690397734663551} a + \frac{14013781699082840957}{76185080592013804341}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6662652.60444 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 71 conjugacy class representatives for t16n1385 are not computed |
| Character table for t16n1385 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.4.38721814528.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 577 | Data not computed | ||||||