Normalized defining polynomial
\( x^{16} - 648 x^{14} + 21168 x^{12} + 39488904 x^{10} - 1225230300 x^{8} - 857661210000 x^{6} - 170131978800 x^{4} - 66238050412800 x^{3} + 41342070848400 x^{2} + 837176934680100 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(764760995596249771707719623311297085440000000000000000=2^{54}\cdot 3^{20}\cdot 5^{16}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2331.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{27} a^{5} + \frac{1}{9} a^{3}$, $\frac{1}{189} a^{6} + \frac{1}{63} a^{4}$, $\frac{1}{567} a^{7} + \frac{1}{189} a^{5}$, $\frac{1}{68040} a^{8} + \frac{1}{2835} a^{7} - \frac{13}{5670} a^{6} + \frac{8}{945} a^{5} + \frac{11}{378} a^{4} - \frac{1}{9} a^{3} - \frac{1}{6} a^{2} + \frac{1}{4}$, $\frac{1}{476280} a^{9} + \frac{1}{4410} a^{7} + \frac{23}{1890} a^{5} - \frac{1}{6} a^{3} - \frac{1}{4} a$, $\frac{1}{1428840} a^{10} + \frac{1}{476280} a^{8} + \frac{4}{2835} a^{6} - \frac{4}{189} a^{4} + \frac{1}{12} a^{2} - \frac{1}{4}$, $\frac{1}{4286520} a^{11} - \frac{31}{39690} a^{7} - \frac{83}{5670} a^{5} - \frac{1}{36} a^{3} - \frac{1}{3} a$, $\frac{1}{12859560} a^{12} + \frac{1}{238140} a^{8} - \frac{2}{2835} a^{7} - \frac{1}{3402} a^{6} - \frac{16}{945} a^{5} - \frac{11}{756} a^{4} - \frac{1}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{2}$, $\frac{1}{810152280} a^{13} - \frac{1}{10001880} a^{11} + \frac{1}{1071630} a^{9} + \frac{251}{535815} a^{7} - \frac{89}{11340} a^{5} + \frac{53}{324} a^{3}$, $\frac{1}{218741115600} a^{14} + \frac{1}{2025380700} a^{13} - \frac{1}{54010152} a^{12} - \frac{1}{25004700} a^{11} - \frac{187}{578680200} a^{10} - \frac{1}{2143260} a^{9} - \frac{391}{57868020} a^{8} - \frac{11}{21870} a^{7} + \frac{1061}{612360} a^{6} - \frac{43}{5670} a^{5} + \frac{2495}{61236} a^{4} - \frac{11}{162} a^{3} - \frac{5}{36} a^{2} - \frac{17}{54} a$, $\frac{1}{10611709972547558736263275767686309394247091235150000} a^{15} + \frac{214213318165049554145384830984398617663}{98256573819884803113548849700799161057843437362500} a^{14} - \frac{3672145682234395634088634144643047943773}{9357768935227124106052271400076110576937470225000} a^{13} + \frac{30809697887282768694418054637544402140653}{2426088242466291434902440733353065705131936725000} a^{12} - \frac{985209160654463307519558493698101462739361}{196513147639769606227097699401598322115686874725000} a^{11} + \frac{158155072350369185102519503494796377559429}{1039752103914124900672474600008456730770830025000} a^{10} + \frac{501906888756962322264556197308276592110347}{561466136113627446363136284004566634616248213500} a^{9} - \frac{291165744623374564196360659035953981218037}{41590084156564996026898984000338269230833201000} a^{8} + \frac{590681169583127996478980626908807219892447}{1663603366262599841075959360013530769233328040} a^{7} + \frac{1815154266097305985828159589978456218912}{1100266776628703598595211216940165852667545} a^{6} - \frac{1003236394778132863688904910877630674150123}{118828811875899988648282811429537912088094860} a^{5} + \frac{24089916385241596260170622068861486053493}{880213421302962878876168973552132682134036} a^{4} + \frac{178944960243728496304591742413617145090847}{1746455200997942219992398757047882305821500} a^{3} - \frac{102057614635655623328951960232284036591813}{1047873120598765331995439254228729383492900} a^{2} + \frac{19540461883978757494919715944445799946719}{48512644472165061666455521029107841828375} a - \frac{628407463752035469089405124805940215473}{7187058440320749876511929041349309900500}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35342415376800000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{16}$ (as 16T1953):
| A non-solvable group of order 10461394944000 |
| The 123 conjugacy class representatives for $A_{16}$ are not computed |
| Character table for $A_{16}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $15{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.3.5.1 | $x^{3} + 3$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ |
| 3.3.5.2 | $x^{3} + 21$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.5.6.4 | $x^{5} + 20 x^{2} + 5$ | $5$ | $1$ | $6$ | $F_5$ | $[3/2]_{2}^{2}$ | |
| 5.5.6.4 | $x^{5} + 20 x^{2} + 5$ | $5$ | $1$ | $6$ | $F_5$ | $[3/2]_{2}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.7.10.6 | $x^{7} + 42 x^{4} + 7$ | $7$ | $1$ | $10$ | $F_7$ | $[5/3]_{3}^{2}$ | |
| 7.7.10.6 | $x^{7} + 42 x^{4} + 7$ | $7$ | $1$ | $10$ | $F_7$ | $[5/3]_{3}^{2}$ | |