Normalized defining polynomial
\( x^{16} + 4 x^{14} - 24 x^{13} - 238 x^{12} + 488 x^{11} - 72 x^{10} + 940 x^{9} + 1737 x^{8} - 12064 x^{7} + 25292 x^{6} - 13884 x^{5} - 53904 x^{4} + 92752 x^{3} - 60008 x^{2} - 1716 x + 9721 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(758534442582016000000000000=2^{40}\cdot 5^{12}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3895} a^{12} - \frac{9}{205} a^{11} + \frac{76}{205} a^{10} - \frac{22}{205} a^{9} + \frac{1896}{3895} a^{8} + \frac{1837}{3895} a^{7} + \frac{1179}{3895} a^{6} + \frac{1001}{3895} a^{5} + \frac{1489}{3895} a^{4} + \frac{223}{779} a^{3} - \frac{1797}{3895} a^{2} + \frac{1358}{3895} a - \frac{1009}{3895}$, $\frac{1}{3895} a^{13} - \frac{28}{205} a^{11} + \frac{59}{205} a^{10} + \frac{528}{3895} a^{9} - \frac{1127}{3895} a^{8} - \frac{189}{3895} a^{7} + \frac{14}{779} a^{6} + \frac{256}{779} a^{5} - \frac{1336}{3895} a^{4} + \frac{1908}{3895} a^{3} + \frac{1776}{3895} a^{2} + \frac{1404}{3895} a - \frac{61}{205}$, $\frac{1}{159695} a^{14} + \frac{17}{159695} a^{13} - \frac{3}{31939} a^{12} - \frac{235}{1681} a^{11} + \frac{29978}{159695} a^{10} + \frac{72183}{159695} a^{9} + \frac{10504}{159695} a^{8} - \frac{11584}{159695} a^{7} + \frac{498}{159695} a^{6} + \frac{62751}{159695} a^{5} + \frac{71279}{159695} a^{4} + \frac{18627}{159695} a^{3} + \frac{25662}{159695} a^{2} + \frac{3960}{31939} a - \frac{66166}{159695}$, $\frac{1}{2079676180729759242408194045} a^{15} - \frac{4805504907563575487508}{2079676180729759242408194045} a^{14} - \frac{123445377444594427181493}{2079676180729759242408194045} a^{13} + \frac{25430585546793117926001}{415935236145951848481638809} a^{12} + \frac{1003434950042467883275965134}{2079676180729759242408194045} a^{11} - \frac{147850476233422952387895874}{415935236145951848481638809} a^{10} - \frac{15071234762705041524187242}{415935236145951848481638809} a^{9} + \frac{786954498192117714124906602}{2079676180729759242408194045} a^{8} + \frac{38038055622976339775615034}{415935236145951848481638809} a^{7} - \frac{35914150839784073838108084}{2079676180729759242408194045} a^{6} - \frac{93734178719501732505999261}{2079676180729759242408194045} a^{5} + \frac{84592514923838212192519644}{415935236145951848481638809} a^{4} + \frac{15184723289569427766026097}{35248748825928122752681255} a^{3} - \frac{49742820420660054351279678}{2079676180729759242408194045} a^{2} + \frac{77627265062078095215318192}{2079676180729759242408194045} a - \frac{510424744112642684310049068}{2079676180729759242408194045}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14774310.0252 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2.C_2$ (as 16T317):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4:C_2^2.C_2$ |
| Character table for $C_2^4:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||