Normalized defining polynomial
\( x^{16} - 5 x^{15} + 133 x^{13} - 1552 x^{12} + 2435 x^{11} + 6074 x^{10} - 91824 x^{9} + 319644 x^{8} + 423462 x^{7} - 698031 x^{6} - 1557794 x^{5} + 3195899 x^{4} - 2805495 x^{3} - 102434227 x^{2} + 36273710 x + 187710922 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(75014108983158875161309828004416=2^{6}\cdot 97^{4}\cdot 163^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{10371968499815970618831306495047950501308165040344144349540006314} a^{15} + \frac{552576303390236216017806309413640561950789732394785134995627106}{1728661416635995103138551082507991750218027506724024058256667719} a^{14} - \frac{380851830183849107165640753456977810901692230448431481146897158}{1728661416635995103138551082507991750218027506724024058256667719} a^{13} - \frac{3887090046425814869795772717279293864878256525813094785254472621}{10371968499815970618831306495047950501308165040344144349540006314} a^{12} - \frac{3894055905570100380171505280894418219892581228274418350097722931}{10371968499815970618831306495047950501308165040344144349540006314} a^{11} + \frac{1089828197462760557999067886337104017714878320414979238621165728}{5185984249907985309415653247523975250654082520172072174770003157} a^{10} - \frac{1117160444530002338293695180599402529871932406915911325047175411}{5185984249907985309415653247523975250654082520172072174770003157} a^{9} + \frac{1486628522413013278064154549746164084400863889443068510250320601}{5185984249907985309415653247523975250654082520172072174770003157} a^{8} + \frac{784369658967227688344572942116298850267311442251414217179008497}{5185984249907985309415653247523975250654082520172072174770003157} a^{7} - \frac{1093224471991902058677893444037897498634234404597724995216683078}{5185984249907985309415653247523975250654082520172072174770003157} a^{6} - \frac{681474762663814102840192022733935412454234779864250991589974861}{10371968499815970618831306495047950501308165040344144349540006314} a^{5} - \frac{374367978932259295445133534422318700473918253030951934325120935}{3457322833271990206277102165015983500436055013448048116513335438} a^{4} + \frac{1432542940102123620933232601018125892953006100406787987790619118}{5185984249907985309415653247523975250654082520172072174770003157} a^{3} - \frac{287246297969098031661828479073309879664473867334185370785501305}{10371968499815970618831306495047950501308165040344144349540006314} a^{2} + \frac{171472475969554415439491298546682519257199534793955046853050535}{5185984249907985309415653247523975250654082520172072174770003157} a - \frac{845120592991697866190465388613017379211740106017222402566478645}{5185984249907985309415653247523975250654082520172072174770003157}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49918860013.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 69 conjugacy class representatives for t16n1656 are not computed |
| Character table for t16n1656 is not computed |
Intermediate fields
| 4.4.26569.1, 8.4.5647294088.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.6.3.1 | $x^{6} - 194 x^{4} + 9409 x^{2} - 22816825$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 163 | Data not computed | ||||||