Normalized defining polynomial
\( x^{16} - 4 x^{15} - 14 x^{14} - 16 x^{13} - 511 x^{12} + 244 x^{11} - 678 x^{10} - 8760 x^{9} + 21998 x^{8} - 24488 x^{7} + 153132 x^{6} - 214428 x^{5} - 62674 x^{4} + 3390956 x^{3} - 8339980 x^{2} + 4371640 x + 185071 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7478711585794844262400000000=2^{32}\cdot 5^{8}\cdot 13^{6}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{16334633703436526499907859485172457011227413569848451} a^{15} + \frac{7065946919775397171441194759397315449373560087802232}{16334633703436526499907859485172457011227413569848451} a^{14} + \frac{5632834559332528683229412785025411177198670089221144}{16334633703436526499907859485172457011227413569848451} a^{13} - \frac{5226554540888825350400499403382473514589242173817126}{16334633703436526499907859485172457011227413569848451} a^{12} - \frac{5600968704838558312255140978237856904219378066238289}{16334633703436526499907859485172457011227413569848451} a^{11} - \frac{16221743981602806624916746528670439966780693293319}{960860806084501558818109381480732765366318445285203} a^{10} - \frac{4599866985795436111345455475667035161217583989948569}{16334633703436526499907859485172457011227413569848451} a^{9} + \frac{7942461916385100487881141913736230408006094448455830}{16334633703436526499907859485172457011227413569848451} a^{8} + \frac{3771952966795828145949834366916376480254963965853276}{16334633703436526499907859485172457011227413569848451} a^{7} + \frac{8047172537303971055203370089311398121160955313653128}{16334633703436526499907859485172457011227413569848451} a^{6} - \frac{6077764232696337850449597630399080921891441922437688}{16334633703436526499907859485172457011227413569848451} a^{5} - \frac{573436368622050593350422767642558632774457464181088}{16334633703436526499907859485172457011227413569848451} a^{4} - \frac{2713143021937495213285343448746617862916793999938346}{16334633703436526499907859485172457011227413569848451} a^{3} + \frac{5767966923385247235088347815071889914273343611121694}{16334633703436526499907859485172457011227413569848451} a^{2} + \frac{7172048697184751735431818435086804886319207668512546}{16334633703436526499907859485172457011227413569848451} a + \frac{688717916720972482355948387420788319178619010626883}{16334633703436526499907859485172457011227413569848451}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43633048.4531 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).C_2^4$ (as 16T205):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $(C_2\times C_4).C_2^4$ |
| Character table for $(C_2\times C_4).C_2^4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.432640000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 13.8.6.3 | $x^{8} + 65 x^{4} + 1352$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| 31 | Data not computed | ||||||