Normalized defining polynomial
\( x^{16} + 348 x^{14} + 26810 x^{12} - 670992 x^{10} - 74050561 x^{8} + 428011752 x^{6} + 38690866830 x^{4} - 445778900028 x^{2} + 586846391481 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73924058337595330806214217957376000000000000=2^{52}\cdot 3^{6}\cdot 5^{12}\cdot 7^{6}\cdot 13^{8}\cdot 31^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $551.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 13, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{28} a^{10} - \frac{1}{4} a^{9} + \frac{3}{28} a^{8} - \frac{1}{2} a^{7} - \frac{13}{28} a^{6} - \frac{1}{4} a^{5} + \frac{5}{28} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{28} a^{11} - \frac{1}{7} a^{9} - \frac{1}{4} a^{8} + \frac{1}{28} a^{7} - \frac{1}{2} a^{6} - \frac{1}{14} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{1092} a^{12} - \frac{1}{91} a^{10} - \frac{1}{4} a^{9} + \frac{173}{1092} a^{8} - \frac{1}{2} a^{7} + \frac{87}{182} a^{6} - \frac{1}{4} a^{5} + \frac{317}{1092} a^{4} - \frac{5}{26} a^{2} - \frac{1}{4} a - \frac{6}{13}$, $\frac{1}{1092} a^{13} - \frac{1}{91} a^{11} - \frac{25}{273} a^{9} - \frac{1}{4} a^{8} - \frac{2}{91} a^{7} - \frac{1}{2} a^{6} + \frac{11}{273} a^{5} - \frac{1}{4} a^{4} - \frac{5}{26} a^{3} + \frac{15}{52} a - \frac{1}{4}$, $\frac{1}{10562058268895828862853805797330306836} a^{14} + \frac{1153592477785202493101923529785389}{3520686089631942954284601932443435612} a^{12} - \frac{164640505590249519174640161577728127}{10562058268895828862853805797330306836} a^{10} - \frac{1}{4} a^{9} - \frac{77354462413110333073998577858880377}{880171522407985738571150483110858903} a^{8} - \frac{1}{2} a^{7} - \frac{45100962789205826496400080349845385}{1508865466985118408979115113904329548} a^{6} - \frac{1}{4} a^{5} - \frac{55678269975873363357493982564137318}{125738788915426534081592926158694129} a^{4} - \frac{8476342833105885157283647252814913}{251477577830853068163185852317388258} a^{2} - \frac{1}{4} a - \frac{215075914916600023861903714828152317}{502955155661706136326371704634776516}$, $\frac{1}{385293323591050941088043981680812263070444} a^{15} - \frac{110046996167160729375625641447381551507}{385293323591050941088043981680812263070444} a^{13} - \frac{94749028759221799905251997293756924687}{27520951685075067220574570120058018790746} a^{11} + \frac{16271189569788753260457452822724322572557}{385293323591050941088043981680812263070444} a^{9} - \frac{7998306363219732020323829903278162873981}{96323330897762735272010995420203065767611} a^{7} - \frac{141588961674866707754317688706041401007029}{385293323591050941088043981680812263070444} a^{5} - \frac{4173877361875122187059843568693539182249}{18347301123383378147049713413372012527164} a^{3} - \frac{1302124871216997700885236192948081189806}{4586825280845844536762428353343003131791} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 860917562857000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8192 |
| The 152 conjugacy class representatives for t16n1697 are not computed |
| Character table for t16n1697 is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.6397254549504000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.6.3 | $x^{8} - 7 x^{4} + 147$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 31 | Data not computed | ||||||