Normalized defining polynomial
\( x^{16} - 2 x^{15} - 2 x^{14} + 42 x^{13} - 614 x^{12} + 178 x^{11} - 9449 x^{10} - 12791 x^{9} + 64261 x^{8} - 303172 x^{7} + 245065 x^{6} + 88205 x^{5} - 264332 x^{4} + 7809328 x^{3} - 14277659 x^{2} + 5204053 x + 368009 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(739040154910723253702500000000=2^{8}\cdot 5^{10}\cdot 29^{6}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{22} a^{13} - \frac{5}{22} a^{12} + \frac{5}{22} a^{11} - \frac{9}{22} a^{10} + \frac{3}{11} a^{9} + \frac{3}{11} a^{8} + \frac{1}{11} a^{7} + \frac{9}{22} a^{6} + \frac{3}{11} a^{5} + \frac{5}{11} a^{4} - \frac{7}{22} a^{3} + \frac{9}{22} a^{2} + \frac{2}{11} a + \frac{7}{22}$, $\frac{1}{22} a^{14} + \frac{1}{11} a^{12} - \frac{3}{11} a^{11} + \frac{5}{22} a^{10} - \frac{4}{11} a^{9} + \frac{5}{11} a^{8} - \frac{3}{22} a^{7} + \frac{7}{22} a^{6} - \frac{2}{11} a^{5} - \frac{1}{22} a^{4} - \frac{2}{11} a^{3} + \frac{5}{22} a^{2} + \frac{5}{22} a - \frac{9}{22}$, $\frac{1}{540575862728118285202476366082146445882087597717903726} a^{15} + \frac{214228814603772834508100241649707074093403442306454}{270287931364059142601238183041073222941043798858951863} a^{14} + \frac{1424246010258537242876268020936880640764152298006604}{270287931364059142601238183041073222941043798858951863} a^{13} - \frac{15238204909132319024947883435957391870114838388376147}{270287931364059142601238183041073222941043798858951863} a^{12} - \frac{18782034294417969818176360597547211973530678655191665}{49143260248010753200225124189286040534735236156173066} a^{11} - \frac{115848176951117943075109820683728364444281983160705678}{270287931364059142601238183041073222941043798858951863} a^{10} + \frac{103965153130764811558123989903815514790484363362181472}{270287931364059142601238183041073222941043798858951863} a^{9} + \frac{61793193092907103534764445029422940962332392497598429}{540575862728118285202476366082146445882087597717903726} a^{8} - \frac{155824951456471825290591805567752409228227169272507061}{540575862728118285202476366082146445882087597717903726} a^{7} + \frac{76435981188305660654985315429392837856493983234992395}{270287931364059142601238183041073222941043798858951863} a^{6} - \frac{125585231411689464320989305508390879784786820679619061}{540575862728118285202476366082146445882087597717903726} a^{5} + \frac{37286419984985093371226219829325759731474419945723550}{270287931364059142601238183041073222941043798858951863} a^{4} + \frac{190388336179264488758299444772985037073318463719260669}{540575862728118285202476366082146445882087597717903726} a^{3} - \frac{161699225730439010109787035173041804863497303384453971}{540575862728118285202476366082146445882087597717903726} a^{2} - \frac{236199470708154491094575137693177526472400083289963925}{540575862728118285202476366082146445882087597717903726} a + \frac{35278681775694458822685991536575541453310380016741968}{270287931364059142601238183041073222941043798858951863}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 909645027.352 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n790 are not computed |
| Character table for t16n790 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.64525.2, 4.4.2225.1, 4.4.725.1, 8.8.4163475625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.8.6.2 | $x^{8} + 979 x^{4} + 285156$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |