Properties

Label 16.8.73486436776...0000.2
Degree $16$
Signature $[8, 4]$
Discriminant $2^{20}\cdot 5^{8}\cdot 19^{2}\cdot 89^{6}$
Root discriminant $41.37$
Ramified primes $2, 5, 19, 89$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1177

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![15376, -9920, -63472, 95320, -29017, -35784, 51445, -41222, 21967, -6768, 1153, -70, -174, 118, -18, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 18*x^14 + 118*x^13 - 174*x^12 - 70*x^11 + 1153*x^10 - 6768*x^9 + 21967*x^8 - 41222*x^7 + 51445*x^6 - 35784*x^5 - 29017*x^4 + 95320*x^3 - 63472*x^2 - 9920*x + 15376)
 
gp: K = bnfinit(x^16 - 4*x^15 - 18*x^14 + 118*x^13 - 174*x^12 - 70*x^11 + 1153*x^10 - 6768*x^9 + 21967*x^8 - 41222*x^7 + 51445*x^6 - 35784*x^5 - 29017*x^4 + 95320*x^3 - 63472*x^2 - 9920*x + 15376, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 18 x^{14} + 118 x^{13} - 174 x^{12} - 70 x^{11} + 1153 x^{10} - 6768 x^{9} + 21967 x^{8} - 41222 x^{7} + 51445 x^{6} - 35784 x^{5} - 29017 x^{4} + 95320 x^{3} - 63472 x^{2} - 9920 x + 15376 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(73486436776722841600000000=2^{20}\cdot 5^{8}\cdot 19^{2}\cdot 89^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $41.37$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{14} + \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{2} a^{7} + \frac{3}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{31209467559445363745250517456688} a^{15} - \frac{1074884072078593732087621803}{709306080896485539664784487652} a^{14} + \frac{2215721884146763600576634448565}{15604733779722681872625258728344} a^{13} + \frac{4996767609935861445283916545459}{15604733779722681872625258728344} a^{12} - \frac{5902260001824368971755017892627}{15604733779722681872625258728344} a^{11} + \frac{7694692715991452911641993574369}{15604733779722681872625258728344} a^{10} + \frac{13364689392772716003935419744297}{31209467559445363745250517456688} a^{9} - \frac{556638343103771947743160408725}{3901183444930670468156314682086} a^{8} + \frac{13986716647420574788294772257131}{31209467559445363745250517456688} a^{7} + \frac{2457853073522255189074570388301}{15604733779722681872625258728344} a^{6} + \frac{3516095409566518166931591223497}{31209467559445363745250517456688} a^{5} + \frac{26709994547898028682076994944}{177326520224121384916196121913} a^{4} - \frac{11491149711336861861438069886893}{31209467559445363745250517456688} a^{3} + \frac{668980799380684320782631015161}{3901183444930670468156314682086} a^{2} + \frac{3092394810771832710228201289989}{7802366889861340936312629364172} a - \frac{20111500360747702557777488224}{62922313627914039808972817453}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8702720.8905 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1177:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 76 conjugacy class representatives for t16n1177 are not computed
Character table for t16n1177 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.2225.1, 8.4.1504990000.1, 8.4.28198760000.1, 8.8.8572423040000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.3$x^{4} + 2 x^{2} + 20$$2$$2$$6$$C_4$$[3]^{2}$
2.4.6.3$x^{4} + 2 x^{2} + 20$$2$$2$$6$$C_4$$[3]^{2}$
2.8.8.2$x^{8} + 2 x^{7} + 8 x^{2} + 48$$2$$4$$8$$C_2^2:C_4$$[2, 2]^{4}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$89$89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.8.6.2$x^{8} + 979 x^{4} + 285156$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$