Normalized defining polynomial
\( x^{16} - 4 x^{15} + 15 x^{14} + 218 x^{13} - 3104 x^{12} + 21866 x^{11} - 86878 x^{10} + 213152 x^{9} - 545932 x^{8} - 470392 x^{7} + 6809527 x^{6} - 7838166 x^{5} + 7386366 x^{4} + 3934772 x^{3} - 97669675 x^{2} + 23497154 x + 6298321 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72976987184482631056000000000000=2^{16}\cdot 5^{12}\cdot 61^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{15} a^{12} - \frac{1}{15} a^{11} - \frac{2}{15} a^{10} - \frac{2}{15} a^{9} - \frac{4}{15} a^{7} - \frac{7}{15} a^{6} - \frac{1}{15} a^{5} + \frac{1}{3} a^{4} + \frac{2}{15} a^{3} - \frac{7}{15} a^{2} - \frac{4}{15} a - \frac{4}{15}$, $\frac{1}{15} a^{13} + \frac{2}{15} a^{11} + \frac{1}{15} a^{10} - \frac{2}{15} a^{9} - \frac{4}{15} a^{8} + \frac{4}{15} a^{7} + \frac{7}{15} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{3} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{15}$, $\frac{1}{8955} a^{14} - \frac{62}{8955} a^{13} + \frac{277}{8955} a^{12} + \frac{139}{2985} a^{11} - \frac{128}{2985} a^{10} + \frac{19}{1791} a^{9} - \frac{217}{995} a^{8} - \frac{947}{2985} a^{7} - \frac{89}{1791} a^{6} - \frac{572}{2985} a^{5} - \frac{2329}{8955} a^{4} + \frac{4279}{8955} a^{3} - \frac{314}{995} a^{2} + \frac{1792}{8955} a + \frac{4273}{8955}$, $\frac{1}{1548828614886864488364770931893260234324522522635952112565} a^{15} + \frac{4824528079320691429055859856524685454858005333104656}{172092068320762720929418992432584470480502502515105790285} a^{14} - \frac{3394069191133936025857574845765019857043121981364564574}{103255240992457632557651395459550682288301501509063474171} a^{13} + \frac{4369510357648015600065107350812584041577044681267437074}{1548828614886864488364770931893260234324522522635952112565} a^{12} + \frac{21158732789528766848866578983999954265670465290240614636}{516276204962288162788256977297753411441507507545317370855} a^{11} - \frac{197949074146465595121354819479174612821647127522965643459}{1548828614886864488364770931893260234324522522635952112565} a^{10} - \frac{107223106561294811961412360447842359142558880865597295803}{1548828614886864488364770931893260234324522522635952112565} a^{9} + \frac{82520833443502464369988310218588150483998235867464791627}{516276204962288162788256977297753411441507507545317370855} a^{8} + \frac{294926111097797900368248224671378304066771731446255120254}{1548828614886864488364770931893260234324522522635952112565} a^{7} + \frac{387646465502482626390650094233384544064927741914982827289}{1548828614886864488364770931893260234324522522635952112565} a^{6} - \frac{112578227179026792918647089491612110447131651627131298523}{309765722977372897672954186378652046864904504527190422513} a^{5} - \frac{75058177807075401630795310654709210082316004952732236450}{309765722977372897672954186378652046864904504527190422513} a^{4} + \frac{10868445701814411574785551356812249962081111974461643328}{1548828614886864488364770931893260234324522522635952112565} a^{3} + \frac{562795663520812769568966555140732441715825476732172592726}{1548828614886864488364770931893260234324522522635952112565} a^{2} - \frac{9020711609461355653264590633341800049796351541124772592}{34418413664152544185883798486516894096100500503021158057} a - \frac{693859547286183006561817280605513675253423444465149186687}{1548828614886864488364770931893260234324522522635952112565}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8748995701.53 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n864 |
| Character table for t16n864 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.14884000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.3 | $x^{4} + 122$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |