Normalized defining polynomial
\( x^{16} - 4 x^{15} - 24 x^{14} + 104 x^{13} - 90 x^{12} - 330 x^{11} + 3270 x^{10} - 5798 x^{9} + 4472 x^{8} + 7302 x^{7} - 75142 x^{6} + 122230 x^{5} - 121338 x^{4} - 36648 x^{3} + 208986 x^{2} + 120019 x + 18301 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(71576937566385674072265625=5^{12}\cdot 29^{6}\cdot 149^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{9590569} a^{14} + \frac{92644}{9590569} a^{13} - \frac{2775976}{9590569} a^{12} - \frac{3451297}{9590569} a^{11} + \frac{3465662}{9590569} a^{10} + \frac{92201}{9590569} a^{9} - \frac{4635223}{9590569} a^{8} + \frac{939106}{9590569} a^{7} + \frac{1204533}{9590569} a^{6} - \frac{1980476}{9590569} a^{5} + \frac{803212}{9590569} a^{4} + \frac{2689214}{9590569} a^{3} - \frac{669704}{9590569} a^{2} - \frac{872562}{9590569} a + \frac{3297301}{9590569}$, $\frac{1}{8674480826740464168926052697753342421} a^{15} - \frac{437398167300730399271976450939}{8674480826740464168926052697753342421} a^{14} - \frac{1476955174853714295075752569762568190}{8674480826740464168926052697753342421} a^{13} - \frac{2711280044789850584647425607236890931}{8674480826740464168926052697753342421} a^{12} + \frac{838525495522586633910419732785728018}{8674480826740464168926052697753342421} a^{11} - \frac{569049226348380853484072234337560615}{8674480826740464168926052697753342421} a^{10} - \frac{3080299220712052025720550915420148534}{8674480826740464168926052697753342421} a^{9} - \frac{1043871870902819365454848275975656295}{8674480826740464168926052697753342421} a^{8} + \frac{1721674988347782061965014058283807073}{8674480826740464168926052697753342421} a^{7} + \frac{3203196171785690315910455382247710750}{8674480826740464168926052697753342421} a^{6} - \frac{1394528090049599105444565506208391452}{8674480826740464168926052697753342421} a^{5} + \frac{1820421195944690079329906346608340051}{8674480826740464168926052697753342421} a^{4} - \frac{3114323991780893634497386394800835290}{8674480826740464168926052697753342421} a^{3} + \frac{4122714198269356917159029390572644922}{8674480826740464168926052697753342421} a^{2} - \frac{1894582424259745174721891993574900167}{8674480826740464168926052697753342421} a + \frac{2649273120333178204032669535802022819}{8674480826740464168926052697753342421}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11627974.5088 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 44 conjugacy class representatives for t16n1025 |
| Character table for t16n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.4.56780640625.1, 8.8.8460315453125.1, 8.4.78318125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $29$ | 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 149 | Data not computed | ||||||