Normalized defining polynomial
\( x^{16} - 2 x^{15} - 165 x^{14} + 1320 x^{13} - 9147 x^{12} - 79038 x^{11} + 715973 x^{10} + 4115620 x^{9} + 12101655 x^{8} + 43053882 x^{7} - 174579123 x^{6} - 1501317600 x^{5} - 1949248180 x^{4} + 4871115840 x^{3} + 15103522624 x^{2} + 14280858112 x + 5144433664 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(70704738646532877581735658786300135551283209=67^{8}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $550.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{1}{16} a^{7} - \frac{1}{8} a^{6} - \frac{1}{16} a^{5} - \frac{1}{8} a^{4} - \frac{1}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{313984} a^{14} - \frac{2479}{156992} a^{13} + \frac{8675}{313984} a^{12} + \frac{303}{7136} a^{11} - \frac{19147}{313984} a^{10} - \frac{11877}{156992} a^{9} - \frac{16035}{313984} a^{8} - \frac{4709}{39248} a^{7} + \frac{76215}{313984} a^{6} - \frac{8485}{156992} a^{5} + \frac{4421}{313984} a^{4} + \frac{35525}{78496} a^{3} - \frac{34761}{78496} a^{2} + \frac{7745}{19624} a + \frac{245}{4906}$, $\frac{1}{200428920475136179304434074395238117202045096025610988711618048} a^{15} + \frac{87076359231306196896443029106249988481931055413120597967}{100214460237568089652217037197619058601022548012805494355809024} a^{14} + \frac{2346480192776539875696158152580091727952730366571428820566635}{200428920475136179304434074395238117202045096025610988711618048} a^{13} - \frac{344949740966881771883960729124798804252915768463667370733771}{25053615059392022413054259299404764650255637003201373588952256} a^{12} + \frac{3904235506741358343303885907404800341410862719078036950521461}{200428920475136179304434074395238117202045096025610988711618048} a^{11} - \frac{4185401049907167295329818521197630044946290932797917301219823}{100214460237568089652217037197619058601022548012805494355809024} a^{10} + \frac{15754188153761197169350125788008276245014219651451532339733909}{200428920475136179304434074395238117202045096025610988711618048} a^{9} + \frac{1407270349778588421879771448006037053387141230161283045162105}{50107230118784044826108518598809529300511274006402747177904512} a^{8} - \frac{15084417397605981695575305116802992928518196442937447680287577}{200428920475136179304434074395238117202045096025610988711618048} a^{7} - \frac{22860703755238531316319059597200056859798287281258883410490675}{100214460237568089652217037197619058601022548012805494355809024} a^{6} + \frac{3626474898169506498104008445778292695556984687057557807964925}{200428920475136179304434074395238117202045096025610988711618048} a^{5} + \frac{46000979633961419640284814147473875686375254755257203173291}{569400342258909600296687711350108287505809931890940308839824} a^{4} - \frac{334836315226600655359355766987655422693805241970126827135899}{4555202738071276802373501690800866300046479455127522470718592} a^{3} - \frac{1099268141884046576940429631702196070576234499257048117487459}{3131701882424002801631782412425595581281954625400171698619032} a^{2} + \frac{454507778450766411017837378160927810744888420647352690908585}{1565850941212001400815891206212797790640977312700085849309516} a - \frac{356350498666534346300971106640487771366586617371002102909751}{782925470606000700407945603106398895320488656350042924654758}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118751746524000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.8.891310981471327238009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89 | Data not computed | ||||||