Normalized defining polynomial
\( x^{16} - 6 x^{15} - 150 x^{14} + 574 x^{13} + 5002 x^{12} - 3594 x^{11} + 125213 x^{10} + 274386 x^{9} - 6083799 x^{8} - 29821162 x^{7} - 15297636 x^{6} + 180770578 x^{5} + 173251248 x^{4} + 2483202618 x^{3} + 5555106669 x^{2} - 24358063202 x - 13764977908 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(70704738646532877581735658786300135551283209=67^{8}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $550.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{7}{16} a^{3} + \frac{7}{16} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{10} - \frac{1}{32} a^{9} - \frac{3}{64} a^{8} - \frac{3}{16} a^{7} - \frac{5}{32} a^{6} + \frac{3}{16} a^{5} + \frac{9}{64} a^{4} - \frac{1}{4} a^{3} - \frac{17}{64} a^{2} + \frac{1}{32} a + \frac{5}{16}$, $\frac{1}{128} a^{11} - \frac{1}{128} a^{10} + \frac{3}{128} a^{9} - \frac{7}{128} a^{8} + \frac{5}{64} a^{7} - \frac{15}{64} a^{6} - \frac{27}{128} a^{5} - \frac{23}{128} a^{4} + \frac{23}{128} a^{3} - \frac{39}{128} a^{2} - \frac{29}{64} a - \frac{3}{32}$, $\frac{1}{512} a^{12} - \frac{1}{256} a^{11} + \frac{7}{256} a^{9} + \frac{13}{512} a^{8} + \frac{1}{64} a^{7} - \frac{21}{512} a^{6} + \frac{29}{128} a^{5} + \frac{53}{256} a^{4} - \frac{71}{256} a^{3} - \frac{223}{512} a^{2} - \frac{29}{256} a - \frac{33}{128}$, $\frac{1}{11264} a^{13} + \frac{9}{11264} a^{12} - \frac{19}{5632} a^{11} - \frac{41}{5632} a^{10} + \frac{279}{11264} a^{9} - \frac{361}{11264} a^{8} + \frac{2787}{11264} a^{7} + \frac{973}{11264} a^{6} - \frac{1365}{5632} a^{5} - \frac{7}{44} a^{4} - \frac{4649}{11264} a^{3} - \frac{943}{11264} a^{2} + \frac{287}{5632} a - \frac{97}{256}$, $\frac{1}{12525568} a^{14} - \frac{223}{6262784} a^{13} + \frac{135}{12525568} a^{12} - \frac{239}{782848} a^{11} + \frac{101}{12525568} a^{10} + \frac{84759}{6262784} a^{9} - \frac{316329}{6262784} a^{8} - \frac{19623}{142336} a^{7} + \frac{109213}{1138688} a^{6} + \frac{71939}{6262784} a^{5} - \frac{117539}{1138688} a^{4} + \frac{644003}{1565696} a^{3} - \frac{97437}{12525568} a^{2} - \frac{572059}{6262784} a + \frac{37619}{284672}$, $\frac{1}{57528868835173995574960911791029260781723929411141632} a^{15} + \frac{567418716046754684285583928262259505535713345}{57528868835173995574960911791029260781723929411141632} a^{14} - \frac{852029016014088943813540548456603124514506464379}{57528868835173995574960911791029260781723929411141632} a^{13} + \frac{23926668305670123357881248155162486616308925244169}{57528868835173995574960911791029260781723929411141632} a^{12} + \frac{73205392701261966293310212146804968591878314009173}{57528868835173995574960911791029260781723929411141632} a^{11} - \frac{1649194036731473345058130061471338803069695875205}{5229897166833999597723719253729932798338539037376512} a^{10} + \frac{10035162471964684052473005630675625227240440689439}{898888575549593680858764246734832199714436397049088} a^{9} + \frac{991944040045650627739980208772898285884603977258741}{28764434417586997787480455895514630390861964705570816} a^{8} - \frac{890486219869184587330190394476603419396991987780843}{5229897166833999597723719253729932798338539037376512} a^{7} + \frac{7076620204086092420705555607950866933577193605361479}{57528868835173995574960911791029260781723929411141632} a^{6} + \frac{2128188907565218314571621873261681256554186447092985}{57528868835173995574960911791029260781723929411141632} a^{5} + \frac{11328908002017259465409701248652067594132415342611737}{57528868835173995574960911791029260781723929411141632} a^{4} - \frac{884654503039363539492073122131813350500078321113973}{57528868835173995574960911791029260781723929411141632} a^{3} + \frac{22097473629232950948205979946299883006572847511381735}{57528868835173995574960911791029260781723929411141632} a^{2} + \frac{9437875005566028357048095306962841243845075946424573}{28764434417586997787480455895514630390861964705570816} a + \frac{371474926186233214145211736024389591057589317877517}{1307474291708499899430929813432483199584634759344128}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 127446757825000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.8.891310981471327238009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89 | Data not computed | ||||||