Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 41872 x^{12} + 251778 x^{11} - 2342188 x^{10} + 9402260 x^{9} + 171044192 x^{8} - 737819626 x^{7} + 2958541378 x^{6} - 6256536692 x^{5} - 142014209188 x^{4} + 293577770820 x^{3} - 241662173554 x^{2} + 93956112739 x - 10012855669 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(706991024666918541719408792174287819307153=17^{15}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $412.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{89} a^{4} - \frac{2}{89} a^{3} - \frac{43}{89} a^{2} + \frac{44}{89} a + \frac{39}{89}$, $\frac{1}{89} a^{5} + \frac{42}{89} a^{3} - \frac{42}{89} a^{2} + \frac{38}{89} a - \frac{11}{89}$, $\frac{1}{89} a^{6} + \frac{42}{89} a^{3} - \frac{25}{89} a^{2} + \frac{10}{89} a - \frac{36}{89}$, $\frac{1}{89} a^{7} - \frac{30}{89} a^{3} + \frac{36}{89} a^{2} - \frac{15}{89} a - \frac{36}{89}$, $\frac{1}{7921} a^{8} - \frac{4}{7921} a^{7} + \frac{7}{7921} a^{6} - \frac{7}{7921} a^{5} - \frac{29}{7921} a^{4} + \frac{65}{7921} a^{3} - \frac{3020}{7921} a^{2} + \frac{2987}{7921} a + \frac{3123}{7921}$, $\frac{1}{7921} a^{9} - \frac{9}{7921} a^{7} + \frac{21}{7921} a^{6} + \frac{32}{7921} a^{5} + \frac{38}{7921} a^{4} + \frac{800}{7921} a^{3} - \frac{816}{7921} a^{2} - \frac{1394}{7921} a - \frac{858}{7921}$, $\frac{1}{7921} a^{10} - \frac{15}{7921} a^{7} + \frac{6}{7921} a^{6} - \frac{25}{7921} a^{5} + \frac{5}{7921} a^{4} - \frac{2901}{7921} a^{3} - \frac{3387}{7921} a^{2} + \frac{1639}{7921} a + \frac{2564}{7921}$, $\frac{1}{7921} a^{11} + \frac{35}{7921} a^{7} - \frac{9}{7921} a^{6} - \frac{11}{7921} a^{5} - \frac{43}{7921} a^{4} - \frac{3747}{7921} a^{3} - \frac{1386}{7921} a^{2} + \frac{3314}{7921} a + \frac{31}{7921}$, $\frac{1}{704969} a^{12} - \frac{6}{704969} a^{11} - \frac{28}{704969} a^{10} + \frac{17}{704969} a^{9} - \frac{8}{704969} a^{8} + \frac{398}{704969} a^{7} - \frac{2561}{704969} a^{6} + \frac{3793}{704969} a^{5} - \frac{1825}{704969} a^{4} + \frac{175963}{704969} a^{3} + \frac{296591}{704969} a^{2} + \frac{72790}{704969} a + \frac{72135}{704969}$, $\frac{1}{704969} a^{13} + \frac{25}{704969} a^{11} + \frac{27}{704969} a^{10} + \frac{5}{704969} a^{9} - \frac{6}{704969} a^{8} + \frac{2497}{704969} a^{7} + \frac{175}{704969} a^{6} - \frac{694}{704969} a^{5} + \frac{2677}{704969} a^{4} + \frac{35881}{704969} a^{3} - \frac{173749}{704969} a^{2} + \frac{148336}{704969} a + \frac{22876}{704969}$, $\frac{1}{2615197288994624620250804099} a^{14} - \frac{7}{2615197288994624620250804099} a^{13} - \frac{67692169454120785221}{2615197288994624620250804099} a^{12} + \frac{406153016724724711417}{2615197288994624620250804099} a^{11} - \frac{55891439661353237695326}{2615197288994624620250804099} a^{10} - \frac{54425862049017123093145}{2615197288994624620250804099} a^{9} - \frac{164392687502218579581123}{2615197288994624620250804099} a^{8} + \frac{1979073578594369033854092}{2615197288994624620250804099} a^{7} - \frac{9621390116519851921763818}{2615197288994624620250804099} a^{6} + \frac{2125869052266084822955029}{2615197288994624620250804099} a^{5} - \frac{484213031674904830046896}{2615197288994624620250804099} a^{4} - \frac{311110369173600794777323742}{2615197288994624620250804099} a^{3} + \frac{1290064363163510751059731882}{2615197288994624620250804099} a^{2} - \frac{534556653839694886108554730}{2615197288994624620250804099} a + \frac{1064484715707295840942064922}{2615197288994624620250804099}$, $\frac{1}{1331135420098263931707659286391} a^{15} + \frac{19}{102395032315251071669819945107} a^{14} - \frac{155873530635789851933381}{1331135420098263931707659286391} a^{13} - \frac{892268083692603682128673}{1331135420098263931707659286391} a^{12} - \frac{20385551389427016188478076}{1331135420098263931707659286391} a^{11} + \frac{34449601973159057609191739}{1331135420098263931707659286391} a^{10} - \frac{14793558480028635789496260}{1331135420098263931707659286391} a^{9} - \frac{76739749391696988873621394}{1331135420098263931707659286391} a^{8} + \frac{1815773254843586445203167768}{1331135420098263931707659286391} a^{7} - \frac{6180312830497349696657104085}{1331135420098263931707659286391} a^{6} - \frac{7084349116648519950635966989}{1331135420098263931707659286391} a^{5} - \frac{4946719817370790910966768276}{1331135420098263931707659286391} a^{4} - \frac{39064464133491398542610507519}{102395032315251071669819945107} a^{3} - \frac{259813706130473943176175658041}{1331135420098263931707659286391} a^{2} - \frac{325219987103960158634789835233}{1331135420098263931707659286391} a + \frac{640474686343413789396955369923}{1331135420098263931707659286391}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119950898824000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.25745567912986193.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $89$ | 89.4.3.3 | $x^{4} + 267$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 89.4.3.3 | $x^{4} + 267$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.3 | $x^{4} + 267$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |