Normalized defining polynomial
\( x^{16} - x^{15} + 188 x^{14} + 7377 x^{13} - 17594 x^{12} - 1381795 x^{11} - 5293289 x^{10} + 69162204 x^{9} + 480433550 x^{8} - 1037559794 x^{7} - 13587856083 x^{6} + 10794765535 x^{5} + 255680761873 x^{4} - 71370632807 x^{3} - 3911934284598 x^{2} - 8682678868227 x - 5465405110997 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(706991024666918541719408792174287819307153=17^{15}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $412.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{2}{13} a^{13} - \frac{1}{13} a^{12} + \frac{3}{13} a^{11} + \frac{4}{13} a^{10} - \frac{1}{13} a^{8} + \frac{4}{13} a^{7} - \frac{2}{13} a^{6} - \frac{4}{13} a^{5} + \frac{5}{13} a^{4} - \frac{3}{13} a^{3} - \frac{5}{13} a^{2} + \frac{5}{13} a$, $\frac{1}{1001680701549845148377796996894445811726976617538661887178265725094238890300487900415403891} a^{15} + \frac{1981348421955726390205492202266598880670615679929441743495356752520839974684793589278681}{77052361657680396029061307453418908594382816733743222090635825007249145407729838493492607} a^{14} + \frac{95319547156957378953028410663129499659722951386521008038389901438038617278587170733775467}{1001680701549845148377796996894445811726976617538661887178265725094238890300487900415403891} a^{13} + \frac{185066096212105525168947385219686066805192491904140710668291113262131084886629763415187422}{1001680701549845148377796996894445811726976617538661887178265725094238890300487900415403891} a^{12} + \frac{406836471914817562770545060340465173658815018322045115484707498872775891578121484658937776}{1001680701549845148377796996894445811726976617538661887178265725094238890300487900415403891} a^{11} + \frac{134238590032544160332042062384757794449829415023596687515315289696489063963455424007776236}{1001680701549845148377796996894445811726976617538661887178265725094238890300487900415403891} a^{10} + \frac{59170111756085851479277563754770943773051723928839415267602308457403501503556317310964411}{1001680701549845148377796996894445811726976617538661887178265725094238890300487900415403891} a^{9} + \frac{424390765413270694009803941476342095496140707377378054299157636124003469173682551461796057}{1001680701549845148377796996894445811726976617538661887178265725094238890300487900415403891} a^{8} - \frac{454981052986605183277239466674391651917508510634107672909596886453439479830836928078517107}{1001680701549845148377796996894445811726976617538661887178265725094238890300487900415403891} a^{7} - \frac{17744525481961574747215682369558039950779125685939148599070070954034018502397576470678111}{77052361657680396029061307453418908594382816733743222090635825007249145407729838493492607} a^{6} - \frac{31830811372394975410613443389186895097961162651003415479498021646702396549687714692592094}{77052361657680396029061307453418908594382816733743222090635825007249145407729838493492607} a^{5} - \frac{25686231490911872934774044990955324873035799534319554798373540869448827875022764987999811}{77052361657680396029061307453418908594382816733743222090635825007249145407729838493492607} a^{4} - \frac{331888153591359535260828078935544600502355532851490475433977476573973711830011559746400963}{1001680701549845148377796996894445811726976617538661887178265725094238890300487900415403891} a^{3} - \frac{126713798772093643890302079210273880263377318375117521370468540449548219601443647000716642}{1001680701549845148377796996894445811726976617538661887178265725094238890300487900415403891} a^{2} - \frac{205520625052019860163224395320013240632795478664381141146832097487331837494544312965248877}{1001680701549845148377796996894445811726976617538661887178265725094238890300487900415403891} a - \frac{27983909027511563534388701149358627523776295551850122670246439452407808583945158110472830}{77052361657680396029061307453418908594382816733743222090635825007249145407729838493492607}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 160504965712000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.25745567912986193.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $89$ | 89.4.3.3 | $x^{4} + 267$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 89.4.3.3 | $x^{4} + 267$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |