Normalized defining polynomial
\( x^{16} - 4 x^{15} + 10 x^{14} - 564 x^{13} - 3887 x^{12} - 10564 x^{11} - 229166 x^{10} - 1591384 x^{9} - 5361528 x^{8} - 11926252 x^{7} + 863210 x^{6} + 101652956 x^{5} + 248959625 x^{4} + 212805460 x^{3} + 32333530 x^{2} - 22885728 x - 3636911 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7044019193056619128660199158998630400000000=2^{38}\cdot 5^{8}\cdot 7^{8}\cdot 241^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $476.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{8}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{4} a^{9} - \frac{1}{6} a^{7} - \frac{5}{12} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{1}{12} a^{2} - \frac{1}{8} a + \frac{5}{24}$, $\frac{1}{72} a^{14} + \frac{1}{72} a^{13} + \frac{1}{36} a^{12} + \frac{1}{36} a^{10} - \frac{1}{12} a^{9} - \frac{5}{36} a^{8} + \frac{1}{12} a^{7} - \frac{7}{36} a^{6} - \frac{7}{36} a^{5} - \frac{1}{6} a^{4} - \frac{4}{9} a^{3} - \frac{17}{72} a^{2} + \frac{35}{72} a - \frac{7}{36}$, $\frac{1}{73876037076385028701578285602999557386477366730567929744} a^{15} - \frac{2759216831923145004840208072162563538387771473939449}{2736149521347593655614010577888872495795458027058071472} a^{14} + \frac{93851097304608610128356035603097187098601952533408955}{73876037076385028701578285602999557386477366730567929744} a^{13} + \frac{3596283064349823408070730385421846605736917613542612031}{73876037076385028701578285602999557386477366730567929744} a^{12} + \frac{3608133656016708944605938800782715800389432193101575125}{36938018538192514350789142801499778693238683365283964872} a^{11} + \frac{31643735374283233403203629737405802147416444187429739}{900927281419329618311930312231701919347284960128877192} a^{10} + \frac{1392501814104030533081925115316280619218958698281672831}{18469009269096257175394571400749889346619341682641982436} a^{9} - \frac{1779905386739429381619930086931887667522650244926847319}{9234504634548128587697285700374944673309670841320991218} a^{8} + \frac{98861452398549115898680302634496319677306274146100281}{450463640709664809155965156115850959673642480064438596} a^{7} - \frac{499326807846501082349392910067256360489821922495880131}{2052112141010695241710507933416654371846593520293553604} a^{6} - \frac{13617668304381444320059089120622886848584552972609669485}{36938018538192514350789142801499778693238683365283964872} a^{5} + \frac{3670275381709504277285643459437642344509733718825367101}{36938018538192514350789142801499778693238683365283964872} a^{4} + \frac{212138978360033536635731618047537320577334919142670017}{600618187612886412207953541487801279564856640085918128} a^{3} - \frac{23735834583168355315186806874565204120402274242307900749}{73876037076385028701578285602999557386477366730567929744} a^{2} + \frac{33056371946574530800910687369253938056469678755291622513}{73876037076385028701578285602999557386477366730567929744} a + \frac{24465378912894060879746326097973737703437537152657566389}{73876037076385028701578285602999557386477366730567929744}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 794266084703000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1228 are not computed |
| Character table for t16n1228 is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{16870}) \), \(\Q(\sqrt{1687}) \), 4.4.385600.2, 4.4.75577600.2, \(\Q(\sqrt{10}, \sqrt{1687})\), 8.8.331757139925442560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.97 | $x^{8} + 4 x^{7} + 6 x^{4} + 4 x^{2} + 10$ | $8$ | $1$ | $22$ | $D_4\times C_2$ | $[2, 3, 7/2]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7 | Data not computed | ||||||
| 241 | Data not computed | ||||||