Normalized defining polynomial
\( x^{16} - 4 x^{15} - 90 x^{14} - 244 x^{13} + 633 x^{12} + 28276 x^{11} + 75894 x^{10} - 160984 x^{9} - 2053388 x^{8} - 7061852 x^{7} + 21793570 x^{6} + 119982956 x^{5} + 209648745 x^{4} + 263821580 x^{3} - 837002750 x^{2} - 1822563328 x - 815756591 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7044019193056619128660199158998630400000000=2^{38}\cdot 5^{8}\cdot 7^{8}\cdot 241^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $476.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{12} a^{11} + \frac{1}{12} a^{10} - \frac{1}{4} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{12} a^{5} + \frac{5}{12} a^{4} + \frac{5}{12} a^{3} + \frac{5}{12} a^{2} - \frac{1}{4} a - \frac{1}{12}$, $\frac{1}{780} a^{14} - \frac{1}{65} a^{13} - \frac{23}{780} a^{12} + \frac{31}{260} a^{11} - \frac{29}{780} a^{10} - \frac{31}{195} a^{9} - \frac{1}{10} a^{8} - \frac{179}{780} a^{7} - \frac{49}{780} a^{6} + \frac{1}{780} a^{5} - \frac{167}{780} a^{4} - \frac{53}{195} a^{3} + \frac{59}{780} a^{2} - \frac{139}{780} a + \frac{1}{30}$, $\frac{1}{23227538611363200781015872865785554109245658666603032898416580} a^{15} - \frac{1053353055683526406488785321430167607515965963982081376841}{23227538611363200781015872865785554109245658666603032898416580} a^{14} + \frac{73704884754565468877029005003873370248810444356933996550041}{2322753861136320078101587286578555410924565866660303289841658} a^{13} - \frac{142697585210462984638727297728285374618475114394839405085473}{1161376930568160039050793643289277705462282933330151644920829} a^{12} + \frac{236630257132034752039119664027456945925572870054341482374983}{7742512870454400260338624288595184703081886222201010966138860} a^{11} - \frac{104713200886940929569551107930229025001316714556072454481977}{5806884652840800195253968216446388527311414666650758224604145} a^{10} - \frac{3489140244401616603233388198646074308428387480351630266531887}{23227538611363200781015872865785554109245658666603032898416580} a^{9} - \frac{1931335160324895805142063567521331934482414402778223702129359}{7742512870454400260338624288595184703081886222201010966138860} a^{8} - \frac{190839916582047246109664038673902806756984043913565722519197}{5806884652840800195253968216446388527311414666650758224604145} a^{7} - \frac{556380199321288800063562952404569721453097686010548050360571}{1786733739335630829308913297368119546865050666661771761416660} a^{6} - \frac{5314016815975544837395256847421774508973076294794181036299661}{23227538611363200781015872865785554109245658666603032898416580} a^{5} - \frac{468474739021553452375249104096075577057755770292390463611917}{11613769305681600390507936432892777054622829333301516449208290} a^{4} + \frac{863845252873597042406268187577076920459531092151781198581366}{1935628217613600065084656072148796175770471555550252741534715} a^{3} + \frac{505451981884303523574900275932093854588272797703686352185037}{2322753861136320078101587286578555410924565866660303289841658} a^{2} - \frac{130835283826625399337178532152012952682018947763996708247834}{1935628217613600065084656072148796175770471555550252741534715} a - \frac{161522866277546864734925177226915925309087125789321109633101}{595577913111876943102971099122706515621683555553923920472220}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 999004485714000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1228 are not computed |
| Character table for t16n1228 is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{16870}) \), \(\Q(\sqrt{1687}) \), 4.4.75577600.2, 4.4.385600.2, \(\Q(\sqrt{10}, \sqrt{1687})\), 8.8.331757139925442560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.97 | $x^{8} + 4 x^{7} + 6 x^{4} + 4 x^{2} + 10$ | $8$ | $1$ | $22$ | $D_4\times C_2$ | $[2, 3, 7/2]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7 | Data not computed | ||||||
| 241 | Data not computed | ||||||