Normalized defining polynomial
\( x^{16} - 4 x^{15} - 29 x^{14} + 2382 x^{13} - 82573 x^{12} - 427336 x^{11} + 11394403 x^{10} + 27090344 x^{9} - 189686251 x^{8} - 287852338 x^{7} - 2171051651 x^{6} - 22553825868 x^{5} - 971088042492 x^{4} - 3371533703552 x^{3} - 5254806287296 x^{2} + 16552670883328 x - 7727214997504 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7017513031942338923028700587492388019023549177=31^{12}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $733.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} + \frac{1}{32} a^{9} - \frac{1}{16} a^{8} + \frac{1}{8} a^{6} + \frac{3}{32} a^{5} + \frac{5}{32} a^{4} + \frac{15}{32} a^{3} - \frac{3}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{9} - \frac{1}{16} a^{8} + \frac{1}{8} a^{7} + \frac{7}{32} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{9}{32} a^{3} - \frac{3}{16} a^{2}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{10} - \frac{1}{16} a^{9} + \frac{7}{32} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} + \frac{1}{32} a^{4} + \frac{5}{16} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{128} a^{14} - \frac{1}{128} a^{12} - \frac{1}{64} a^{11} + \frac{7}{128} a^{10} - \frac{1}{32} a^{9} + \frac{3}{128} a^{8} + \frac{1}{32} a^{7} - \frac{7}{128} a^{6} - \frac{9}{64} a^{5} + \frac{25}{128} a^{4} + \frac{1}{8} a^{3} - \frac{11}{32} a^{2} + \frac{3}{8} a$, $\frac{1}{32400479881083662936764190353440909320270899713237000659838439937759219964535081341910016} a^{15} + \frac{72396470910876128966876806882809211157031983788495016149893317331839332816773368967}{1012514996283864466773880948545028416258465616038656270619951248054975623891721291934688} a^{14} - \frac{378108315081127811923895737516130484024488947056649712128576356582848149052237498264573}{32400479881083662936764190353440909320270899713237000659838439937759219964535081341910016} a^{13} + \frac{170280238394072287875521081400674829592219773929350178253014404268364772768621005796253}{16200239940541831468382095176720454660135449856618500329919219968879609982267540670955008} a^{12} - \frac{33632878393909014424947370455258321875193836892445188512283941991432424116419831549957}{32400479881083662936764190353440909320270899713237000659838439937759219964535081341910016} a^{11} + \frac{425744169047398021479074835177007719809101861035936704813675297689554898883953635471841}{8100119970270915734191047588360227330067724928309250164959609984439804991133770335477504} a^{10} + \frac{454951514777158188294885374370208114443661926504950282216479574636237637274658050006163}{32400479881083662936764190353440909320270899713237000659838439937759219964535081341910016} a^{9} - \frac{354148061805373588388632609884832807740769497961709395028551536252460244750895625388347}{8100119970270915734191047588360227330067724928309250164959609984439804991133770335477504} a^{8} + \frac{530566716589726112850539299979012861602629697643729245899075231551674125339797796647621}{32400479881083662936764190353440909320270899713237000659838439937759219964535081341910016} a^{7} - \frac{1651183072492603446844674874012547805177748853391906596006340350766177189294717936307007}{16200239940541831468382095176720454660135449856618500329919219968879609982267540670955008} a^{6} + \frac{5851979121844424514428798467098500232787985612136771886872433220603344150050877341195365}{32400479881083662936764190353440909320270899713237000659838439937759219964535081341910016} a^{5} - \frac{179246734690454228821232973065045753049171561263190717669057346429537379314052045196419}{4050059985135457867095523794180113665033862464154625082479804992219902495566885167738752} a^{4} + \frac{1184200297842174675087916016462133449947786432147540148771169935542638836699972349305921}{8100119970270915734191047588360227330067724928309250164959609984439804991133770335477504} a^{3} + \frac{11565320586572675363390972061515417155683276326402192910915260209803388385573527739297}{2025029992567728933547761897090056832516931232077312541239902496109951247783442583869376} a^{2} + \frac{10532967384329806090243687758691954267073345257147361741899762190092087001567281905327}{31641093633870764586683779642032138008077050501208008456873476501717988246616290372959} a + \frac{11613273711774897212287707354728679659923902527469735202131407436760585066328265742472}{31641093633870764586683779642032138008077050501208008456873476501717988246616290372959}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 416510986026000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.8.10202504527754980537.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 31 | Data not computed | ||||||
| 73 | Data not computed | ||||||