Normalized defining polynomial
\( x^{16} - 8752 x^{14} - 7200731392 x^{12} + 36863389517120 x^{10} + 13611700064197971142 x^{8} - 7267228884846036391424 x^{6} - 3384507326332862097584407792 x^{4} + 11574363150647086989170162447488 x^{2} + 83142230203097022619741298888816802 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6985872701411915091439460916010822936571645898168438313975808=2^{71}\cdot 7^{8}\cdot 150513919^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $6349.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 150513919$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{150513919} a^{10} - \frac{8752}{150513919} a^{8} + \frac{23936720}{150513919} a^{6} - \frac{27982603}{150513919} a^{4} - \frac{7092852}{150513919} a^{2}$, $\frac{1}{150513919} a^{11} - \frac{8752}{150513919} a^{9} + \frac{23936720}{150513919} a^{7} - \frac{27982603}{150513919} a^{5} - \frac{7092852}{150513919} a^{3}$, $\frac{1}{22654439812738561} a^{12} - \frac{8752}{22654439812738561} a^{10} - \frac{7200731392}{22654439812738561} a^{8} + \frac{36863389517120}{22654439812738561} a^{6} - \frac{3618263257904019}{22654439812738561} a^{4} - \frac{11660562}{150513919} a^{2}$, $\frac{1}{203889958314647049} a^{13} + \frac{301019086}{203889958314647049} a^{11} + \frac{90615117454584676}{203889958314647049} a^{9} - \frac{38066397165548642}{203889958314647049} a^{7} - \frac{11565415184448298}{67963319438215683} a^{5} - \frac{326874104}{1354625271} a^{3} + \frac{4}{9} a$, $\frac{1}{620778721258813329697221965581988507871407249743883384358926246101865651761712152308187304940522807} a^{14} + \frac{1738986580553839148603407500652983721874075755093253569925474633612613233762741644}{620778721258813329697221965581988507871407249743883384358926246101865651761712152308187304940522807} a^{12} + \frac{1617993435932621939224001249800881978226348818867156893340485964599841763894416650179621051}{620778721258813329697221965581988507871407249743883384358926246101865651761712152308187304940522807} a^{10} - \frac{115453339269484567932621524661259749278788915316840586606514285906623619073738884056833718261195122}{620778721258813329697221965581988507871407249743883384358926246101865651761712152308187304940522807} a^{8} - \frac{37552971582499924994663213574156830362173999032661867895306524647762459451539588688821074833997273}{206926240419604443232407321860662835957135749914627794786308748700621883920570717436062434980174269} a^{6} - \frac{792701599144542335241372547348142859547059789648469067459575506053213275053637139700333842}{4124394111742006596062534027713333993193063093014562888093600473600489080094394142432682953} a^{4} + \frac{843477600727071347976428639646645665769019985892879115438480255885369257080343529}{27402077755626086621680045602382687233019712236810224096906283289324817062894988087} a^{2} - \frac{2470356328871116982356379859738417405005221585292328173925506807967278861}{20228529868926449860745323126621847314569781296225518368397752480231720897}$, $\frac{1}{620778721258813329697221965581988507871407249743883384358926246101865651761712152308187304940522807} a^{15} - \frac{145076525069648571410486149339578194273494202974949900834284093664337011839880411}{68975413473201481077469107286887611985711916638209264928769582900207294640190239145354144993391423} a^{13} + \frac{233829352699781537051890968020014143367765798973954919516980328073664662431848000877294851}{206926240419604443232407321860662835957135749914627794786308748700621883920570717436062434980174269} a^{11} + \frac{25492419056521468767131359696258741223638503930455464538897709245436169797432067737650386661249313}{68975413473201481077469107286887611985711916638209264928769582900207294640190239145354144993391423} a^{9} + \frac{3240904697712264718184572929963156259198637409717387888137766328314393654664694765837487210122387}{620778721258813329697221965581988507871407249743883384358926246101865651761712152308187304940522807} a^{7} - \frac{90847559629098627795796641552269636271839907833410619934554766893628534027646679512283924}{4124394111742006596062534027713333993193063093014562888093600473600489080094394142432682953} a^{5} + \frac{828406686318849120900942323205737839282647043619172668227115279274987859740588313}{3044675306180676291297782844709187470335523581867802677434031476591646340321665343} a^{3} + \frac{78909442384792196462519196895463479927801912213496638276659201129453094736}{182056768820338048746707908139596625831128031666029665315579772322085488073} a$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{7}) \), 4.4.25088.1, 8.8.322256764928.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | $16$ | R | $16$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 150513919 | Data not computed | ||||||