Normalized defining polynomial
\( x^{16} - 24 x^{14} - 20 x^{13} - 318 x^{12} + 1120 x^{11} + 9668 x^{10} - 7480 x^{9} - 81135 x^{8} + 11200 x^{7} + 304472 x^{6} - 33880 x^{5} - 388788 x^{4} + 178840 x^{3} - 23276 x^{2} - 313580 x - 5279 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(698337529849446400000000000000=2^{40}\cdot 5^{14}\cdot 101^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3367019425328217358814274089713186666697133207} a^{15} - \frac{194407743945435903797211643753454047230699323}{3367019425328217358814274089713186666697133207} a^{14} + \frac{1096577962894954522326145091691998988715959524}{3367019425328217358814274089713186666697133207} a^{13} + \frac{204424533211382175311462554117821969138500873}{1122339808442739119604758029904395555565711069} a^{12} - \frac{369741932248729978360138625302700135911620973}{3367019425328217358814274089713186666697133207} a^{11} - \frac{221408700563034539044071416492842131158170763}{3367019425328217358814274089713186666697133207} a^{10} + \frac{1008187889448397976989781848842077248232778733}{3367019425328217358814274089713186666697133207} a^{9} - \frac{305342486027374714339747536489901822554504405}{1122339808442739119604758029904395555565711069} a^{8} - \frac{952887076501093614082193589269106210203354429}{3367019425328217358814274089713186666697133207} a^{7} - \frac{159216978693484586606731848491989244147161151}{3367019425328217358814274089713186666697133207} a^{6} - \frac{6936026078627450591764458179566832796500413}{3367019425328217358814274089713186666697133207} a^{5} + \frac{110006096048349746587115710888291833336920497}{1122339808442739119604758029904395555565711069} a^{4} + \frac{147277160031519364656248093035458850118600636}{1122339808442739119604758029904395555565711069} a^{3} - \frac{1045792356115458115996756451676173949836210069}{3367019425328217358814274089713186666697133207} a^{2} - \frac{475616483073719141715047592218680748651204755}{3367019425328217358814274089713186666697133207} a + \frac{1443389676475220694146242008985578517239696763}{3367019425328217358814274089713186666697133207}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1107580346.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1161 |
| Character table for t16n1161 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.4.517120000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 101 | Data not computed | ||||||